RESOURCE INVENTORY SHADY LANE PROPERTY

SECTION 99, TOWNSHIP 99 NORTH, RANGE 99 WEST, W.M. SHADY COUNTY, WASHINGTON

JULY 2013

RESOURCE INVENTORY SHADY LANE PROPERTY

SECTION 99, TOWNSHIP 99 NORTH, RANGE 99 WEST, W. M. SHADY COUNTY, WASHINGTON

Inventory Dates: June 19 to 27, 2013 Report Date: July 17, 2013

RESOURCE INVENTORY

SHADY LANE PROPERTY

Table of Contents

page

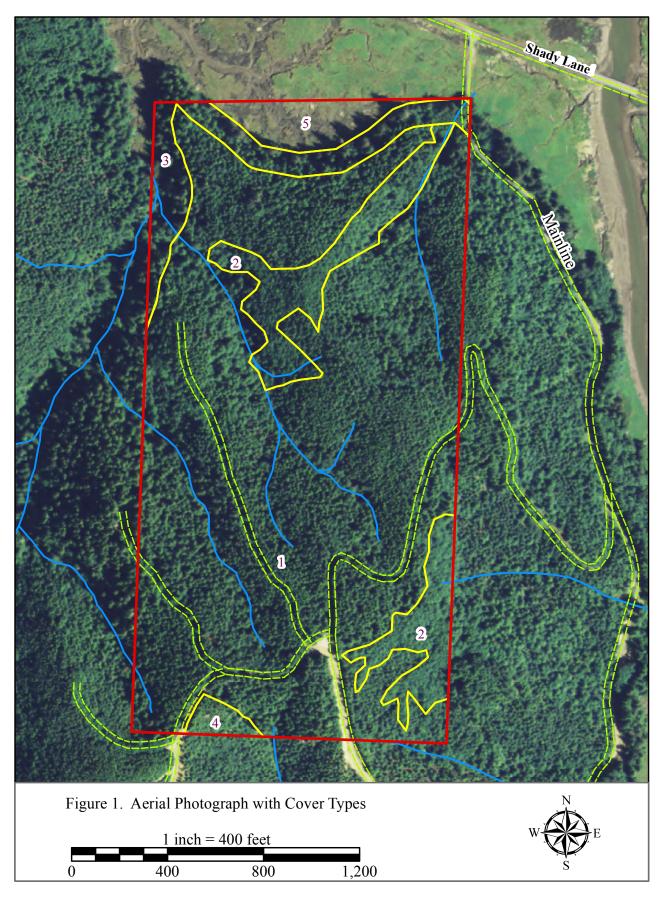
I. Property Description Location, Size, and Access Cover Types Operability for Logging	1 1 3
II. Methods	
Tree Data – Cruise Design	5
Tree Measurements	5 7
Log Grades and Sorts	7
Data Analysis – Tree Data	7
Multi-Layering	9
Snags	9
Down Wood	10
Understory Vegetation	10
III. Inventory Results	
Tree Data	11
Site Quality	11
Diameter Diversity Index and Stand Density Index	29
Multi-Layering	29
Snags	30
Down Wood	32
Understory Vegetation	33

I. PROPERTY DESCRIPTION

Location, Size, and Access

The Shady Lane Property covers the southwest quarter of the northeast quarter and the northwest quarter of the southeast quarter of Section 99, Township 99 North, Range 99 West, W. M., Shady County, Washington. Approximate acreage is 80.0. The property is located just south of the Shady River, near Shady Town. Figure 1 is an aerial photograph taken in 2011. Cover types, which are described below, are delineated on the photograph.

The property is accessed from a well maintained graveled logging road that originates on Shady Lane. This road passes to the east of the property. A spur road from the mainline enters it. However, this spur is not drivable. It is overgrown with brush and blocked by blowdown.


Property lines are not marked. Their locations were estimated using a global positioning system (GPS).

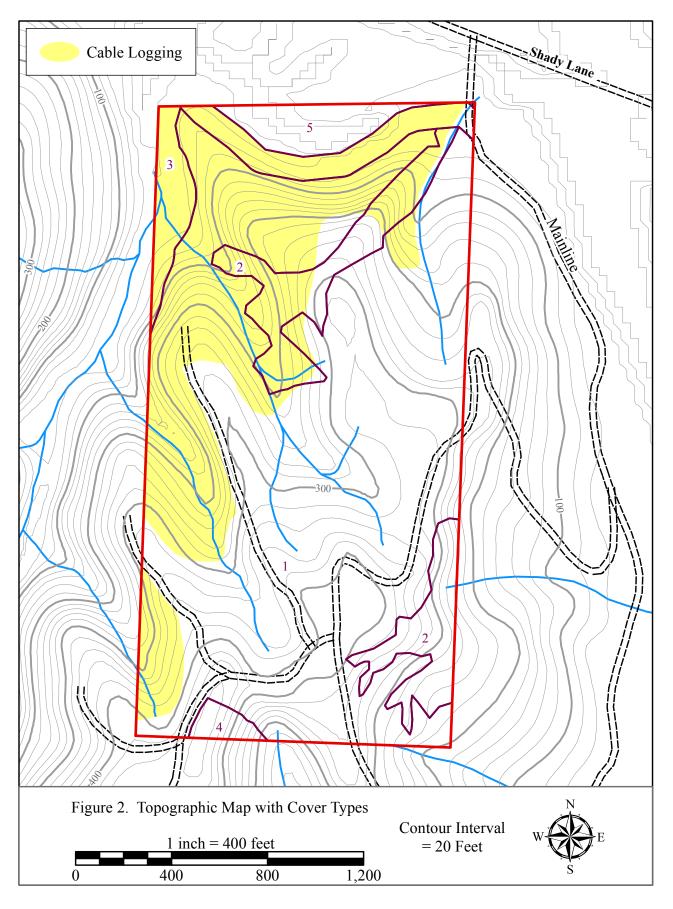
Cover Types

For the inventory, the property was divided into five cover types. The five types are as follows:

<u>Type</u>	Acres	Description
1	59.5	Merchantable Conifers
2	8.6	Merchantable Hardwoods
3	5.1	RMZ and WMZ
4	0.8	10-year-old Plantation
5	2.6	Non-Forested Wetland
Roads	3.4	
Total	80.0	

The RMZ (Riparian Management Zone) is the required buffer around a fish-bearing stream that passes through the northwest corner of the property. As specified in Washington's Forest Practices Rules, it extends 140 feet beyond the ordinary high water mark on both sides of the stream. The WMZ (Wetland Management Zone) is the required protective buffer adjacent to the wetland associated with the Naselle River. It extends 100 feet from the edge of the wetland. Logging is not necessarily prohibited in the RMZ and WMZ, but it is strictly limited. The Forest Practices Rules specify the conditions for harvest and the amount of timber that may be removed.

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY - SHADY LANE PROPERTY Type 1 is well stocked with primarily western hemlock. Average age is about 46 years, but the stand also contains younger trees. Type 2 is stocked primarily with red alder. Conifers are scattered. Stocking is more variable than in Type 1. Age range is similar.


Type 3 consists primarily of hemlock and alder that is the same age is in Types 1 and 2. However, the type also contains large residual western hemlock, Sitka spruce, and western redcedar trees.

Type 4 appears to be well stocked with Douglas-fir and western hemlock. It was not included in this inventory.

Operability for Logging

Topography is mixed. Slopes generally are under 30 percent in the south and east. In the north and west, they range up to 100 percent. The terrain is broken by several small streams. Slopes are steepest near these streams.

Figure 2 is a topographic map of the property. It shows the areas that will require cable logging. The remainder the acreage can be logged by shovel or tractor.

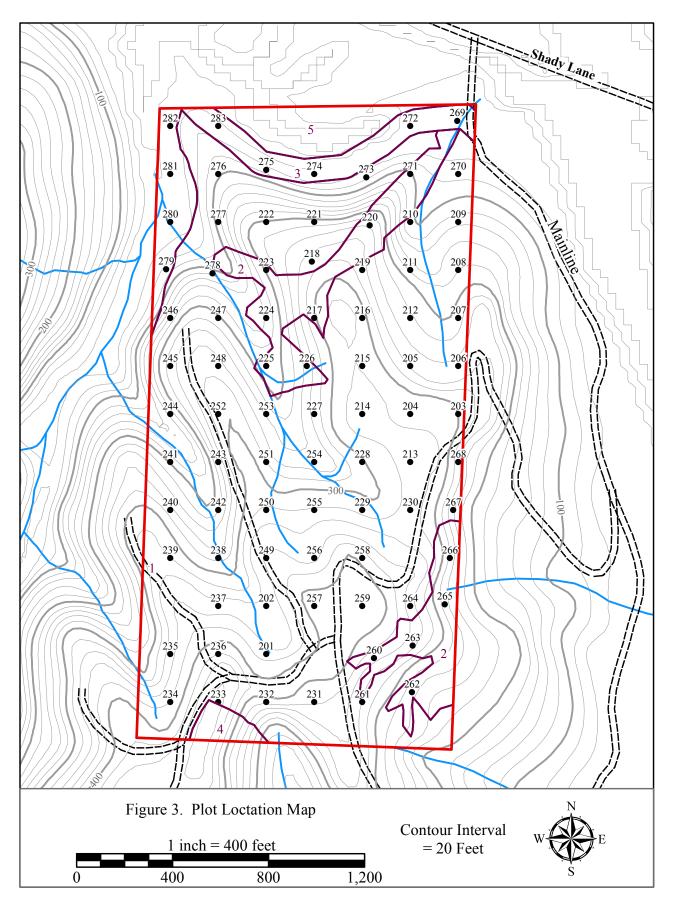
NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY - SHADY LANE PROPERTY

II. METHODS

<u> Tree Data – Cruise Design</u>

Prior to the cruise, cover types were delineated on the aerial photograph in Figure 1. Acreage then was estimated using ArcGIS software.

The property was inventoried between June 19 and 27 by Matthew Sheehy. The three types with merchantable timber, Types 1 through 3, were cruised with a total of 83 plots. Types 1, 2, and 3 contained 62, 12, and 9 plots, respectively. Figure 3 shows the plot locations.


All plots were located on a square 200-foot grid. Each sample point was cruised with nested variable and fixed radius plots with the same center. Trees that were 6.6 inches and larger at four feet above stump level were cruised on the variable radius plots. Trees from 1.0 feet tall to 6.5 inches in diameter were cruised on the fixed radius plots. Plot centers were marked with fluorescent pink flagging. One flag was tied to a stick in the ground at center, and another was hung above center with plot number written on it

Basal area factor on the variable radius plots was 40. Sighting point for determining whether a tree was in a sample plot was four feet above stump level. Fixed radius plots were 0.01 acres in size.

<u>Tree Measurements</u>

On the variable radius plots, species, D4H (diameter at four feet above stump level), form factor, merchantable height, estimated defect, and type of tree damage, if any, were recorded for each sample tree. Total height and live crown ratio were recorded for all trees on every other plot. Form factor is the ratio of diameters outside bark at 16 and four feet above stump level. Merchantable height generally is height to an inside bark diameter of five inches for conifers and six inches for hardwoods. When the top log is pulp quality, minimum top diameter is three inches rather than five or six. However, merchantable height cannot exceed height to the point where outside bark diameter at 16 feet above stump level. If a tree is broken below the point of normal merchantability, merchantable height is to the break. The following categories of damage were recorded: blowdown, top broken, other weather damage, root disease, dwarf mistletoe, Swiss needle cast, other disease, and insect damage.

Preferred length was 40 feet, plus trim, for export quality Douglas-fir, western hemlock, and Sitka spruce sawlogs. It was 36 to 40 feet, plus trim, for domestic quality sawlogs of these species, as well as for western redcedar sawlogs. Preferred length was 30 feet, plus trim, for hardwood sawlogs. All logs contained 12 inches of trim. Logs were cruised in other lengths due to defect or at the top of the tree. In some cases, they were bucked shorter in order to improve sort recovery.

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY - SHADY LANE PROPERTY Maximum length for all species was 40 feet, plus trim, and minimum was 12, plus trim. The minimum merchantable tree was at least 6.6 inches in diameter. Dead trees with salvageable volume were tallied if they met these requirements.

On the fixed-radius plots, species, DBH (diameter at breast height - 4.5 feet above ground level), total height, and live crown ratio were recorded for each sample tree. Trees from 1.0 to 4.5 feet tall were given a DBH of zero.

Ten western hemlock trees were sampled for site index in Type 1, and three were sampled in Type 3. No suitable hemlock or Douglas-fir sample trees could be found in Type 2. Additional trees were bored in order to determine age distribution within each type.

Log Grades and Sorts

Each log on the variable radius plots was assigned a grade and sort. With one exception, grades are based on the Official Rules of the Columbia River Log Scaling and Grading Bureaus. The exception was applied to large, rough No. 3 Sawmill Douglas-fir, western hemlock, and Sitka spruce logs. These logs were assigned a grade designated No. 3 Sawmill Rough if they met the size standards for No. 2 Sawmill, but were too rough for No. 2 Sawmill specifications. The Official Rules include No. 3 Sawmill Rough logs with other No. 3 Sawmill logs. The distinction is important, however, because these large rough logs are worth considerably less than smaller No. 3 Sawmill logs. Grades generally remain constant over time.

Sorts reflect current market conditions and change over time. Table 1 lists the sorts used in the cruise. The first five are for export quality Douglas-fir, western hemlock, and Sitka spruce sawlogs.

<u>Analysis Methods – Tree Data</u>

Most of the data were analyzed using the Super A.C.E. cruise program. However, two stand characteristics, Diameter Diversity Index and Stand Density Index, were calculated using a spreadsheet. The formula for Diameter Diversity Index is complex and is not repeated here. This index is based on a comparison of diameter distribution in a particular stand to that of a typical old growth stand. The formula gives the most weight to trees in the larger diameter classes. The index increases as diameter diversity increases and as the percentage of trees with large diameters increases. The maximum index number is 10.00.

Table 1. Log Sort Definitions

- JA JAPAN EXPORT Special Mill or very good No. 2 Sawmill appearance. No sweep, hooked butts, or knot whorls. Defect deductions less than 10 percent of gross scale. Knots generally less than 1.0 inches, well scattered in upper quarter. Minimum scaling diameter 12 inches, minimum length 26 feet plus trim.
- CJ INTERMEDIATE EXPORT Good No. 2 Sawmill quality. No excessive taper or sweep. Defect deductions less than 10 percent of gross scale. Knots generally less than 1.5 inches, well distributed. Minimum scaling diameter 12 inches, minimum length 26 feet plus trim.
- J8 JAPAN EXPORT, 8"-11" Special Mill appearance. No sweep, hooked butts or knot whorls. Defect deductions less than 10 percent of gross scale. Knots generally less than 0.5 inches, well scattered in upper quarter. Scaling diameter between 8 and 11 inches, minimum length 26 feet plus trim.
- KO KOREA EXPORT No. 3 Sawmill quality. No excessive taper or sweep. Defect deductions less than 15 percent of gross scale. Scaling diameter between 8 and 11 inches, minimum length 26 feet plus trim.
- CH CHINA EXPORT No. 2 or No. 3 Sawmill quality. No excessive taper or sweep, but more sweep allowable than for other export sorts. Defect deductions less than 25 percent of gross scale. Minimum scaling diameter 8 inches, minimum length 26 feet plus trim.
- DO DOMESTIC CONIFER SAWLOG Too small for export or rough, bumpy, with sweep, hook, or defect that excludes export sorts. Minimum scaling diameter 5 inches, minimum length 12 feet plus trim.
- HD HARDWOOD SAWLOG Can be trimmed to a smooth appearance. Minimum scaling diameter 8 inches, minimum length 12 feet plus trim.
- H5 Similar to HD, except scaling diameter 5 to 7 inches. Minimum length 16 feet plus trim.
- PU Pulp log. Too small for other sorts or cannot be classified as a sawlog due to sweep, roughness, or other defects. Minimum scaling diameter 3 inches, minimum length 12 feet.

Stand Density Index is calculated by the following formula:

```
(Number of Trees per Acre) X (Quadratic Mean Diameter/10)<sup>1.605</sup>
```

Only trees 2.0 inches in diameter and larger are counted. The index for a particular stand can be compared to an assumed maximum density. Maximum density in stands of shade-tolerant species is greater than that of other stands.

<u>Multi-Layering</u>

At all sample points in all types, the cruiser recorded whether the tree canopy on a 0.02-acre circular plot is multi-layered. Sample plots were considered to be multi-layered when they contained two or more distinct canopy levels. In general, a plot is called multi-layered when it contains residual trees that are distinctly taller than trees in the predominant age class, when hardwoods are overtopping smaller conifers, or when openings within the plot are filled with trees significantly shorter than the predominant trees.

<u>Snags</u>

Snags that are at least 6.6 inches in diameter and 4.5 feet tall were recorded if they fell in the variable radius plots. For each snag, DBH, total height, and Decay Class were recorded. Decay Classes are defined as follows:

- 1 bark loosened, sapwood riddled by beetles, heartwood intact, limbs intact, top intact
- 2 bark mined by beetles, sapwood mined extensively, heartwood softened with cavities, limbs broken, top broken
- 3 bark sloughing off, sapwood decayed considerably, heartwood decayed and partly sloughed, stubs of largest branches remain, top gone
- 4 bark piled at base, sapwood sloughed off, no sound heartwood, limbs gone, top gone
- 5 bark gone, sapwood gone, heartwood in the remaining stub, limbs gone, top gone

Down Wood

Volume and weight of down wood was measured using transects that ran from each plot center north for 50 feet. All down wood whose intersect diameter was 4.0 inches or larger was tallied. For each piece, species, intersect diameter, length, and Decay Class were recorded. Volume, weight, and number of pieces per acre were calculated using procedures described in a publication of the Canadian Forestry Service (Van Wagner, C. E., 1982. Practical Aspects of the Line Intersect Method. Petawawa National Forestry Institute, Canadian Forestry Service, Chalk River, Ontario, Information Report PI-X-12, 11 p.).

Decay Classes are defined as follows:

- 1 bark intact, twigs less than three centimeters present, texture intact, shape round, original color, log elevated on support points
- 2 bark intact, twigs less than three centimeters absent, texture intact to partly soft, shape round, original color, log elevated on support points but sagging slightly
- 3 trace of bark, twigs less than three centimeters absent, texture in hard, large pieces, shape round, original color to faded, log is sagging near ground
- 4 bark absent, twigs less than three centimeters absent, texture in small, soft, blocky pieces, round to oval shape, light brown to faded brown or yellowish color, all of log on ground
- 5 bark absent, twigs less than three centimeters absent, texture soft and powdery, oval shape, faded to light yellow or gray color, all of log on ground

Understory Vegetation

The percentage of the forest floor covered by each of three categories of vegetation was ocularly estimated using 0.02 acre circular plots with the same centers as the plots used for measuring merchantable timber and pre-merchantable trees. The three categories were grass, herbs, and shrubs. Ferns were tallied with the herbs and constituted a large percentage of the cover in this category. Due to overlapping, the sum of coverages in the three categories could exceed 100 percent.

In addition, percentage of cover for each shrub or herb species that contained at least 10 percent cover was recorded. If no one species contained 10 percent cover, percentage of cover for the major species in each category was recorded.

III. INVENTORY RESULTS

Tree Data

Table 2 summarizes the tree data. It shows average diameter, basal area, number of trees, cubic and board foot volumes, and other measurements by species for each type. Table 3 breaks down board foot volume for all three types combined by species, log sort, and log grade. Tables 4, 7, and 10 contain the breakdowns for each of the three types. Tables 5, 8, and 11 are statistical summaries for each of the three types, and Tables 6, 9, and 12 are stand tables.

Estimated net total volume on the property is 1,733 MBF. About 1,585 MBF of this total, or about 91percent, is in Types 1 and 2, the two types in which timber harvest is not restricted. About 74 percent of total volume is in western hemlock. Most of the remainder is in Douglas-fir and red alder. Standard error of mean net total board foot volume is 6.5 percent.

Broken tops were the most common type of damage. In Type 1, an average of 10.4 trees per acre had broken tops, and in Type 3, an average of 7.2 per acre had broken tops. None were tallied in Type 2, but in this type, an average of 3.6 trees per acre had other weather damage. No other type of damage was found on the sample plots.

Site Quality

The site measurements indicate that average site index, base age 50, is 116 for western hemlock. This index is low Class 2 on a scale from 1 to 5, with Class 1 being the most productive for growing this species.

Table 2. Cruise Summary

TC P	CATALOG						Cata	uog - 1	species	s, Volum	es				Page No Date:	1 7/17/2	013
															GROWN	DATE.	
					S		Fotal		BA	Trees	Logs	AvgL	nσ	Net	Net	Total	Total
Туре	Acres Sce Date	Age	SI	Spc	T DBH		Hgt	STK	/Ac	/Ac	/Ac	CuFt	0.00		Bf/Ac	CUNITS	MB
0001	59.50 TC 6/13	- 46	116	WH	12.6	87	81	56	157.4	182.75	315.1	18	64	5,720	20,082	3,403	1,19:
0001		46	116	DF	13.9	86	80	13	23.9	22.56	38.5		66	768	2,544	457	15
		46	116	RA	12.9	85	75	9	17.4	19.19	33.1	15	44	503	1,464	300	8
		46	116	SS	16.1	86	80	1	5.8	4.08	6.7	7 30	95	202	643	120	3
		46	116	RC	23.0	75	73		1.3	.45		6 61	138	37	82	22	
	AGE TOTAL				12.8	87	80	79	205.8	229.03	394.0) 18	63	7,230	24,816	4,302	1,47
		15		WH	2.6		18	87	7.9	211.12							
		15	116	DF	3.8		26	2	.3	3.22							
		15	116	RA	4.5		44	1	1.1	9.67							
		15 15	116 116	SS RC	2.9 2.1		20 12	3 4	.4 .2	8.06 8.06							
		15		CA	2.1		27	4	.2	4.83							
	AGE TOTAL	15	110	CA	2.0		19	97	.2. 10.0	244.96							
	1102 10 1112	24	116	DF	10.8	84	56	3	1.9	3.04	3.0) 13	39	38	119	23	
		24		SS	9.0	65	36	1	.6	1.46	1.5		10	7	15	4	
	AGE TOTAL				10.3	78	49	4	2.6	4.50	4.1	5 10	30	46	134	27	
		150	116	SS	36.0	87	109		1.3	.18	.4	4 161	668	59	244	35	1
	AGE TOTAL				36.0	87	109		1.3	.18	.4	4 161	668	59	244	35	1
0001	59.50 TYPE	74.79	100 124270	NT 8 33	9.2	87	49	180	219.6	478.67	398.9	C5. 10027/181	63	7,334	25,193	4,364	1,49
0002	8.60 TC 6/13	46		RA	10.9	82	60	75	123.3	191.25	278.9		32	3,423	9,016	294	7
		46	116	WH	20.0	86	94	1	3.3	1.53	3.1		145	134	443	12	
		46	116	RC	13.0	70	58	1 2	3.3 3.3	3.62 7.55	3.6 7.5		30	83 68	108	7	
	AGE TOTAL	46	116	DF	9.0 10.9	8 7 82	58 60	2 79	3.3 133.3	7.33 203.94	293.1		30 <i>33</i>	3,709	226 9,794	319	٤
	AGE IOTAL	15	116	RA	5.4	02	44	8	7.9	49.96	293.1	15	55	3,703	2,124	515	
		15	116	WH	3.6		24	37	6.4	91.59							
		15	116	RC	3.0		16	7	.8	16.65							
		15	116	SS	3.0		14	15	2.0	41.63							
		15	116	CA	1.4		15		.5	49.96							
	AGE TOTAL				3.6		24	67	17.7	249.80							
		24	116	RA	7.0	85	36	3	3.3	12.47	12.3	54	10	50	125	4	
		24	116	WH	7.0	84	35	3	3.3	12.47	12.5		10	50	125	4	
	AGE TOTAL				7.0	85	36	6	6.7	24.95	24.9		10	100	249	9	8
0002 0003	8.60 TYPE	46	116	WITT	7.8	82	40 68	152	157.7	478.68	318.1	635 - Mah 1708	32	3,809	10,043	328	<u> </u>
0003	5.10 TC 6/13		116 116	WH RA	14.7 12.7	84 86	69	52 30	142.2 48.9	120.91 55.39	170.9 88.2		88 52	4,574 1,507	15,078 4,607	233 77	7
			116	SS	29.5		104	4	8.9	1.87	3.7		345	371	1,289	19	-
			116	RC	29.0	83	81	2	4.4	.97	1.9		285	151	552	8	
	AGE TOTAL				14.5	85	68	88	204.4	179.14	264.8		81	6,604	21,526	337	11
		150	116	WH	30.5	86	129	2	8.9	1.75	5.3	- 0 - 1117.5	319	441	1,676	22	
		150	116	SS	54.4	83	132	3	13.3	.83	2.5	5 266	1263	658	3,126	34	1
		150	116	RC	37.0	79	93	3	13.3	1.79	3.6	5 129	479	460	1,714	23	
		150	116	\mathbf{DF}	30.0	88	114	1	4.4	.91	2.7	7 72	327	195	887	10	
	AGE TOTAL				37.3	84		9	40.0	5.27	14.() 125	528	1,754	7,403	89	3
			116	WH	4.2		28	70	15.0	155.43							
			116	RA	6.0		49	2	2.2	11.10							
			116	SS	1.0		4	5	.1	11.10							
	AGE TOTAL	15	116	RC	3.6 4.1		15 25	20 97	3.2 20.5	44.41 222.04							
0003	5.10 TYPE				4.1	85		97 194	264.9	406.45	278.9	20	104	8,357	28,930	426	14
	73.20 SECTION SU	ЛММАН	RY		10.7	20	72	ACR		700.40	270.3	50	104	1997	20,200	5,118	1,73
	73.20 TWP RGE S	n constant	100000					ACF	0-0-00							5,118	1,73
			0.1455						ES							.,	

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

	PSPCSTGR				ort Gra														
						Acres		73.2	20						2	Page Date Time		1 7/201 03:43	13
		%				2	Perc	ent of N	let Boar	rd Foot	Volume				a a	Averaş	ge Log		Logs
	S So Gr	Net	Bd. Ft.	per Acre		Total	1	Log Sca	le Dia.			Log I	ength		. Ln	Dia	Bd	CF/	Per
Spp	T rtad	BdFt	Def%	Gross	Net	Net MBF	3-7	8-9	10-11	12+	12-15	16-25	26-35	36-40	Ft	In	Ft	Lf	/Acre
WH	CU CU		100.0	75											4	13		0.00	3.
WH	PU UT	4	1.2	799	790	58	50	16	10	23	6	52	9	33	21	4	22	0.30	36.
WH	CJ 2S	12	1.0	2,210	2,187	160				100				100		14	273	1.71	8.
WH WH	CH 28 CH 38	6	3.5	949 2 501	916	67 184		56	44	100			6 1	94 00	38 39	14 9	288	1.85	3.
WH	DO 2S	14 3	2.8 11.9	2,591 513	2,518 452	184 33		56	44	100		12	Ţ	99 88	1016333	15	111 249	0.85 1.96	22. 1.
WH	DO 23 DO 3S	15	2.2	2,787	2,725	199	78	11	10	100		12	3	97	37	7	65	0.54	41.
WH	DO 4S	21	.5	3,732	3,713	272	100	0				26	37	37	28	5	30	0.32	124.
WH	DO 3R	_	34.4	35	23	2				100				100	40	14	190	1.88	
WH	JA 2S	3		396	396	29				100				100	40	12	212	1.35	1.
WH	KO 3S	19	.5	3,402	3,386	248		49	51					100	40	9	126	0.87	26.
WH	J8 3S	3		451	451	33		69	31					100	40	9	128	0.80	3.
wн	Totals	74	2.1	17,940	17,557	1,285	35	22	19	24	0	8	9	82	31	7	64	0.59	274.
		23		0.5455	010	5	00000					2020			0.5550	62.9	2224	0072025	23
SS	PU UT	1	1212	12	12	1	100			121212		100		2002	20	3	10	0.25	1.
SS	CH 2S	46	4.2	501	480	35		20	00	100			1	99	10000000	17	524	3.21	3
SS	CH 3S	10 2	3.4	110	107	8 2		20	80	100		100	16	84	11004100	10 34	138 700	1.21 9.75	
SS SS	DO 28 DO 38	2 12	12.5 4.9	23 137	21 130	10	26	74		100		100		100	16 37	34 8	700 79	9.75 0.72	1.
SS	DO 33 DO 48	7	1.7	73	72	5	93	7				39	24	37	26	5	29	0.72	2.
SS	DO 3R	15	20.9	188	149	11				100		4	8	88	0.45859	24	870	6.33	
SS	JA 28	7		71	71	5				100				100	40		460	2.65	
SS	Totals	4	6.7	1,116	1,041	76	11	12	8	69		6	5	89	31	8	141	1.27	7.
DC	CU CU														4	17		0.00	
RC RC	CU CU PU UT	5		13	13	1	100							100	40	4	30	0.00	
RC	DO 3S	95	3.8	234	225	16	100	12	4	83		6	25	69	33		259	2.55	
	Totals	1	3.6	247	238	17	5	12	4	79		6	24	71	32			1.79	1.4
RC	Totals	-	5.0	217	250	17		15				U	21	,1	50		100	1.72	1.
DF	CU CU		100.0	33											20	12		0.00	
DF	PU UT	2		66	66	5	100					40		60	23	4	21	0.29	3.
DF	CH 2S	9	5.2	204	194	14				100				100	10001100	13	224	1.51	
DF	CH 3S	21	.8	466	462	34		51	49	2014		5050-0		100	38	9	119	0.87	3.
DF	DO 2S	2	19.5	73	59	4	101		~~	100		32		68	1000-00	14	179	1.66	-
DF	DO 3S	26	3.6	609 507	587	43	61	7	33			-	2 44	98 25	38	7 5	75 21	0.61	7.
DF DF	DO 48 KO 38	23 17	.7	507 382	504 382	37 28	100	56	44			20	44	35 100	30 40		31 141	0.36 0.95	16. 2.
		17	3.8	2,341	2,253	165	41	22	26	11		7	10	83	33	7	64	0.58	35.
זע	Totals	10	3.0	4,941	د دع,2	103	41	22	20	11		E	10	03	- 33	15	04	00	.55
RA	CU CU														3	10		0.00	2.
RA	PU UT	31	.7	824	819	60	82	3	11	3		24	56	20	27	4	20	0.30	41.
RA	HD 2S	12	6.2	337	316	23				100			84	16	31		154	1.39	2.
RA	HD 3S	22	4.1	575	551	40		100	100			20	46	34	29		109	1.07	5
RA RA	HD 48 H5 48	28 7	11.1 5.3	817 182	726 172	53 13	100	100				20 35	53 37	28 28	28 27	8 6	53 33	0.71 0.42	13 5
		11	5.5	2,736	2,585	13	33	29	25	13		20	55	28	27	6	502.05	0.42	70
ΛА	Totals	11	5.5	2,130	2,383	189	33	29	23	13		20	23	23	27	U	3/	0.49	-70

	Table 4.	Log Sort and	Grade Distribution	n – Type 1
--	----------	--------------	--------------------	------------

TSPCSTGR Т

Table 4. Log Sort and Grade Distribution – Type 1	
Species, Sort Grade - Board Foot Volumes (Type)	Page

1						Туре 0001	Acre 59.		Plots 62			e Trees 177		C 1	uFt	BdFt W			
			%					Perc	ent Ne	et Boa	rd Foot	Volume			,	Avera	ge Log		T
	s _{So}	Gr	Net	Bd. I	Ft. per Acre		Total	L	og Sca	ale Dia	ı.	Log	Leng	th		Ln Dia	Bd	CF/	Logs Per
Spp	rt T	ad	BdFt	Def%	Gross	Net	Net MBF	3-7		10-11		12-15 1	_		36-40	Ft In	Ft	Lf	/Acre
WH	CU	CU		100.0	92											4 13		0.00	4.6
WH	PU	UT	4	.6	826	821	49	55	11	12	22	5	55	9	31	21 4	20	0.29	40.5
WH	CJ	28	12	1.1	2,420	2,393	142				100				100	40 13	264	1.66	9.1
WH	CH	28	3	3.0	813	789	47				100			9	91	38 14	259	1.67	3.0
WH	CH	38	15	2.8	3,061	2,976	177		55	45					100	39 9	112	0.84	26.7
WH	DO	2S	3	11.3	523	464	28	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			100		10		90	36 15	264	1.94	1.8
WH	DO	3S	15	2.1	3,161	3,094	184	81	11	8				2	98	37 7	64	0.53	48.3
WH	DO	4 S	22	.1	4,385	4,382	261	100	0				26	38	37	28 5	30	0.32	146.5
WH	JA	28	2		487	487	29				100				100	40 12	212	1.35	2.3
WH	ко	38	21	.5	4,142	4,123	245		49	51					100	40 9	126	0.87	32.7
WH	J8	38	3		555	555	33		69	31					100	40 9	128	0.80	4.3
WH	Totals		80	1.9	20,466	20,082	1,195	37	22	20	21	0	8	9	82	31 7	63	0.57	319.7
DF	CU	CU		100.0	41											20 12		0.00	.4
DF	PU	UT	3		82	82	5	100					40		60	23 4	21	0.29	4.0
DF	CH	28	7	6.3	210	196	12				100				100	40 12	199	1.42	1.0
DF	CH	3S	21	.8	563	558	33		52	48					100	39 9	119	0.86	4.7
DF	DO	2S	2	16.7	59	49	3				100				100	36 12	150	1.39	.3
DF	DO	3 S	27	3.6	749	722	43	61	7	33				2	98	38 7	75	0.61	9.6
DF	DO	4 S	22	.8	591	587	35	100					21	41	37	30 5	32	0.36	18.6
DF	КО	38	18		470	470	28		56	44					100	40 10	141	0.95	3.3
DF	Totals		11	3.6	2,764	2,663	158	42	23	27	9		6	10	84	33 7	64	0.58	41.9
RA	CU	CU														3 10		0.00	3.5
RA	PU	UT	32	1.5	480	473	28	80	7	12			24	62	14	26 4	24	0.35	19.5
RA	HD	28	12	7.0	190	176	10				100			100		30 12	147	1.32	1.2
RA	HD	38	21	4.4	322	308	18			100			14	66	20	28 10	106	1.08	2.9
RA	HD	4S	30	10.8	501	447	27		100				13	58	29	29 8	54		8.3
RA	H5	4S	5	16.7	71	59	4	100							100	36 6	50		1.2
RA	Totals		6	6.4	1,565	1,464	87	30	33	25	12		15	64	22	25 7	40	0.54	36.6
SS	PU	UT	1		15	15	1	100					100			20 3	10	0.25	1.5
SS	CH	28	48	4.2	446	428	25	100			100		100		100	20 3 39 17		2.92	.9
SS	СН	25 35	12	3.5	115	428	7		12	88	100			12	88	39 17 37 10		1.18	.9
SS	DO	38 38	12	4.9	113	160	10	26	74	00				12	100	37 10	79	0.72	.o 2.0
SS	DO	4S	9	1.7	90	89	5	20 93	7				39	24	37	26 5	29	0.46	3.1
SS	DO	3R	2	34.5	19	13	1		у.		100		57		100	40 14	190	0.0184570.027	.1
SS	JA	28	10	5115	87	87	5				100				100	40 14		2.65	.1
SS	Totals		4	4.2	941	902	54	15	15	11	58		5	4	91	31 8	105	1.02	8.6
<u> </u>					2 Sec 20227	765003000	8008964	00002	1001/952	era Cair	3-9-0e		1000	~	442727				Cardonal
RC	CU	CU	100				<u>8</u>									4 17	1000	0.00	.2
RC	DO	3S	100	8.4	90	82	5		41		59			68	32	34 11	138	1.81	.6

NORTHWEST FORESTRY SERVICES **RESOURCE INVENTORY – SHADY LANE PROPERTY** 1

7/17/2013

2:04:13PM

Date

Time

Т	TSPCSTGR			Specie	es, Sort (Grade - Boar	d Foo	t Vol	umes	(Тур	ie)				Pa Da Tii		2 7/17/20 2:04:13	
1					Туре 0001			Plots 62		-	e Trees 177		Cı 1	ıFt	BdFt W			
		%					Perc	ent Ne	t Boar	d Foot	Volume	;		,	Aver	age Log		Turne
Spp	^S _{So Gr} ^T rt ad	Net BdFt	Bd. F Def%	Ft. per Acre Gross	Net	Total Net MBF	Le 3-7	og Sca 8-9	ile Dia. 10-11			; Leng 16-25 2		36-40	Ln Di Ft In	a Bd Ft	CF/ Lf	Logs Per /Acre
RC	Totals	0	8.4	90	82	5		41		59			68	32	28 12	2 110	1.75	.7
Туре Т	Fotals		2.4	25,825	25,193	1,499	36	23	20	21	0	8	12	79	31	7 62	0.58	407.5

Table 4. Log Sort and Grade Distribution – Type 1 (page 2 of 2)

C TSTATS				S	TATIST	ICS				1 /17/2013
				TYPE	ACI	RES	PLOTS	TREES	CuFt	BdFt
				0001		59.50	62	477	1	W
				TREES		ESTIMATED FOTAL		ERCENT AMPLE		
	PLOTS	TREES	5	PER PLOT		TREES	Т	REES		
TOTAL	62	477		7.7						
CRUISE DBH COUNT	60	325		5.4		13,906		2.3		
REFOREST COUNT	28	152		5.4		14,575		1.0		
BLANKS	1									
100 %			STA	ND SUMM	ARV					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
WHEMLOCK	TREES	/ACRE	DBH 8.7	LEN 39	DEN 55.5	AREA	BF/AC	19 94 8	CF/AC	CF/AC
WHEMLOCK WHEMLOCK-S	373 2	393.0 .9	8.7 16.7	39 67	55.5 0.3	164.0 1.3	20,327 139	19,948 134	5,694 44	5,677 43
WHEMLOCK-S DOUG FIR	2 41	.9 28.1	16.7	67 57	0.3 7.1	1.3 25.4	2,715	134 2,614	44 799	4 <i>3</i> 789
DOUG FIR DOUG FIR-S	41	.7	12.9	57 63	0.2	.6	2,713	2,614	17	17
R ALDER	31	26.9	10.8	50	5.2	17.2	1,427	1,327	465	463
R ALDER-S	2	2.0	10.0	64	0.4	1.3	1,427	1,527	40	40
S SPRUCE	17	13.8	10.4	34	2.5	8.1	941	902	268	268
WR CEDAR	7	8.5	5.7	14	0.6	1.5	90	82	37	37
CASCARA	3	4.8	2.8	27	0.1	.2				
TOTAL	477	478.7	9.2	40	72.5	219.6	25,825	25,193	7,365	7,334
68.1	LIMITS OF THI TIMES OUT OI	E SAMPLE						23,195	7,505	,,,,,,,
68.1 CL: 68.1 %	LIMITS OF THI TIMES OUT OI COEFF	E SAMPLE F 100 THE VC	DLUME WII	L BE WIT	HIN THE S E TREES -	AMPLE ERR BF	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0	LIMITS OF THI TIMES OUT OI COEFF VAR.%	E SAMPLE F 100 THE VC S.E.%	DLUME WII	LL BE WITH SAMPLI OW	HIN THE S C TREES - AVG	AMPLE ERR BF HIGH	OR			INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK	LIMITS OF THI TIMES OUT OI COEFF	E SAMPLE F 100 THE VC	DLUME WII	L BE WIT	HIN THE S E TREES -	AMPLE ERR BF	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7	E SAMPLE F 100 THE VC <u>S.E.%</u> 4.8	DLUME WII	LL BE WIT SAMPLH OW 160	HIN THE S C TREES - AVG 169	AMPLE ERR BF HIGH 177	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIR-S R ALDER	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6	E SAMPLE F 100 THE VC <u>S.E.%</u> 4.8 73.6 8.7 12.4	DLUME WII	LL BE WITT SAMPLH OW 160 47 119 82	HIN THE S TREES - <u>AVG</u> 169 180 131 94	AMPLE ERR BF 1177 313 142 106	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIR-S R ALDER R ALDER-S	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9	E SAMPLE F 100 THE VC <u>S.E.%</u> 4.8 73.6 8.7 12.4 76.8	DLUME WII	LL BE WITT SAMPLI OW 160 47 119 82 22	HIN THE S TREES - <u>AVG</u> 169 180 131 94 95	AMPLE ERR BF HIGH 177 313 142 106 168	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIR-S R ALDER R ALDER-S S SPRUCE	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8	DLUME WII	LL BE WITH SAMPLI OW 160 47 119 82 22 273	HIN THE S AVG 169 180 131 94 95 425	AMPLE ERR BF <u>HIGH</u> 177 313 142 106 168 577	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIR-S R ALDER R ALDER-S S SPRUCE WR CEDAR	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9	E SAMPLE F 100 THE VC <u>S.E.%</u> 4.8 73.6 8.7 12.4 76.8	DLUME WII	LL BE WITT SAMPLI OW 160 47 119 82 22	HIN THE S TREES - <u>AVG</u> 169 180 131 94 95	AMPLE ERR BF HIGH 177 313 142 106 168	OR	OF TREES R	ÆQ.	INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S COUG FIR-S & ALDER & ALDER-S S SPRUCE WR CEDAR CASCARA	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8	DLUME WII	LL BE WITH SAMPLI OW 160 47 119 82 22 273	HIN THE S AVG 169 180 131 94 95 425	AMPLE ERR BF <u>HIGH</u> 177 313 142 106 168 577	OR	OF TREES R	ÆQ.	INF. POP. 1
68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIR COUG FIR R ALDER R ALDER S SPRUCE WWR CEDAR CASCARA FOTAL	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI	HIN THE S AVG 169 180 131 94 95 425 230 167 CTREES -	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 SD: 1.0	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.%	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 S.E.%	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH	OR #	OF TREES R 5 351	REQ. 10 88	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S OUUG FIR-S COUUG FIR-S CALDER-S S SPRU⊂E WR CEDAR CASCARA FOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI	HIN THE S AVG 169 180 131 94 95 425 230 167 CTREES -	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S CALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1	E SAMPLE F 100 THE VC 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 <u>S.E.%</u> 4.5	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH 50	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S R ALDER R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK DOUG FIR-S	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 8.2 8.2	LUME WII	LL BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH 50 89 43	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK-S DOUG FIR-S R ALDER R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK-S DOUG FIR-S R ALDER-S R ALDER	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 8.2 9.8	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK-S DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK-S DOUG FIR-S R ALDER-S	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 8.2 9.8 74.7	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35 48	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S R ALDER R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCKS DOUG FIR-S R ALDER-S S SPRUCE	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 9.8 74.7 32.3	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35 48 151	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3
68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR DOUG FIRS R ALDER R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK WHEMLOCK OUUG FIR DOUG FIR-S R ALDER R ALDER-S S SPRUCE WR CEDAR	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 8.2 9.8 74.7	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28 114	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35 48	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 SD: 1.0 WHEMLOCK-S DOUG FIR OOUG FIR-S R ALDER-S S SPRUCE WHEMLOCK-S DOUG FIR-S R ALDER-S S SPRUCE WALDER-S S SPRUCE WR CEDAR CASCARA	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 9.8 74.7 32.3	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28 114	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35 48 151	OR #	OF TREES R 5 351 OF TREES R	88 88 82	INF. POP. 1 3 INF. POP. 1
68.1 CL: 68.1 % 1.0 WHEMLOCK WHEMLOCKS DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA FOTAL CL: 68.1 % CL	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2 51.7	E SAMPLE F 100 THE VC 8.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 9.8 74.7 32.3 48.5	LUME WII	LL BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77 48	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28 114 93 48	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 176 CF HIGH 50 89 43 35 48 151 138	OR #	OF TREES R 5 351 OF TREES R 5	88 88 88 10 70	INF. POP. 1 3 INF. POP. 1
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCKS CCS R ALDERS R ALDERS R ALDERS S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCKS R ALDERS	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2 51.7 83.7 COEFF VAR.%	E SAMPLE F 100 THE VC 3.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 9.8 74.7 32.3 48.5 4.6 S.E.%	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77 48 46 TREES/2 OW	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28 114 93 48 ACRE AVG	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH 50 89 43 35 48 151 138 <i>50</i> HIGH	OR #	OF TREES R 5 351 OF TREES R 5 280	88 88 88 10 10 70 8EQ.	INF. POP. 1 3 INF. POP. 1 1 NF. POP.
68.1 CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCKS DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK WHEMLOCKS DOUG FIR DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 % SD: 1.0 WHEMLOCK	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2 51.7 83.7 COEFF VAR.% 122.8	E SAMPLE F 100 THE VC S.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 S.E.% 4.5 59.2 8.2 9.8 74.7 32.3 48.5 4.6 S.E.% 15.6	LUME WII	LL BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77 48 46 TREES/2 OW 332	HIN THE S AVG 169 180 131 94 95 425 230 <i>I67</i> CTREES - AVG 48 56 40 32 28 114 93 48 ARE AVG 393	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH 50 89 43 35 48 151 138 <i>50</i> HIGH 454	OR #	OF TREES R 5 351 OF TREES R 5 280 OF PLOTS R	8EQ. 10 88 88 8EQ. 10 70 REQ.	INF. POP. 1 3 INF. POP. 1 3 INF. POP.
68.1 CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK-S DOUG FIR-S R ALDER-S S SPRUCE WR CEDAR CASCARA TOTAL CL: 68.1 SD: 1.0 WHEMLOCK WHEMLOCK SD: 1.0 WHEMLOCK SD: 1.0 WHEMLOCK SD: 1.0 WHEMLOCK SD: 1.0 WHEMLOCK SUB DOUG FIR-S R R ALDER-S S S SPRUCE WR CEDAR CASCARA TOTAL	LIMITS OF THI TIMES OUT OI COEFF VAR.% 74.7 78.6 54.1 60.6 81.9 118.7 86.1 93.6 COEFF VAR.% 70.1 63.1 51.2 48.0 79.7 107.2 51.7 83.7 COEFF VAR.%	E SAMPLE F 100 THE VC 3.E.% 4.8 73.6 8.7 12.4 76.8 35.8 80.7 5.2 8.2 9.8 74.7 32.3 48.5 4.6 S.E.%	LUME WII	L BE WITT SAMPLI OW 160 47 119 82 22 273 44 159 SAMPLI OW 46 23 36 29 7 77 48 46 TREES/2 OW	HIN THE S AVG 169 180 131 94 95 425 230 167 C TREES - AVG 48 56 40 32 28 114 93 48 ACRE AVG	AMPLE ERR BF HIGH 177 313 142 106 168 577 416 <i>176</i> CF HIGH 50 89 43 35 48 151 138 <i>50</i> HIGH	OR #	OF TREES R 5 351 OF TREES R 5 280 OF PLOTS R	8EQ. 10 88 88 8EQ. 10 70 REQ.	INF. POP. 1 3 INF. POP. 1 3

Table 5 – Statistical Summary - Type 1

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

C TSTATS			S	STATIS	ΓICS			PAGE DATE	2 7/17/2013
			ТҮРЕ	A	CRES	PLOTS	TREES	CuFt	BdFt
			0001		59.50	62	477	1	W
CT (0.1.0/	COLLE		TDEDC	(LODE		10 - 10 - 10			
CL: 68.1 % SD: 1.0	COEFF VAR.	S.E.%	TREES LOW	ACRE	HIGH		# OF PLO' 5	IS REQ. 10	INF.PO
	10000422200	314033122002	H-44273 16 45 (1995	2010/02/02/17/07	Press Constants			10	1.00
R ALDER	267.1	33.9	18	27	36				
R ALDER-S	612.1	77.7	0	2	4				
S SPRUCE	267.4	34.0	9	14	18				
WR CEDAR	386.3	49.1	4	9	13				
CASCARA	583.0	74.0	1	5	8		1000		
TOTAL	103.6	13.2	416	479	542		429	107	4.
CL: 68.1 %	COEFF		BASAL	AREA/AG	CRE		# OF PLOTS I	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1
WHEMLOCK	68.0	8.6	150	164	178				
WHEMLOCK-S	552.2	70.1	0	1	2				
DOUG FIR	188.7	24.0	19	25	32				
DOUG FIR-S	787.4	100.0	0	1	1				
R ALDER	195.8	24.9	13	17	21				
R ALDER-S	552.2	70.1	0	1	2				
S SPRUCE	254.9	32.4	5	8	11				
WR CEDAR	484.0	61.5	1	1	2				
CASCARA	583.0	74.0	0	0	0				
TOTAL	44.3	5.6	207	220	232		78	20	
CL: 68.1 %	COEFF		NET BI	F/ACRE			# OF PLOTS I	REO.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1
WHEMLOCK	76.2	9.7	18,017	19,948	21,879				
WHEMLOCK-S	590.2	75.0	34	134	234				
DOUG FIR	198.0	25.1	1,957	2,614	3,272				
DOUG FIR-S	787.4	100.0	0	49	98				
R ALDER	208.7	26.5	975	1,327	1,678				
R ALDER-S	558.5	70.9	40	137	235				
S SPRUCE	300.7	38.2	557	902	1,246				
WR CEDAR	586.9	74.5	21	82	144				
CASCARA									
TOTAL	56.9	7.2	23,372	25,193	27,015		130	32	1
CL: 68.1 %	COEFF		NET CI	UFT FT/A	"RF		# OF PLOTS I	REO	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	1
WHEMLOCK	74.7	9.5	5,138	5,677	6,216				
WHEMLOCK-S	568.3	72.2	12	43	74				
DOUG FIR	194.1	24.6	595	789	984				
DOUG FIR-S	787.4	100.0	0	17	34				
R ALDER	202.2	25.7	344	463	582				
R ALDER-S	556.8	70.7	12	40	69				
S SPRUCE	280.7	35.6	173	268	364				
	552.8	70.2	11	37	62				
WR CEDAR									
WR CEDAR CASCARA	555.0		6265						

Table 5. Statistical Summary – Type 1 (page 2 of 2)

Table 6. Stand Table – Type 1

TC TSI	NDSUM						Stand	Table Si	ımmary						
			~~				уре 001		cres 59.50	Plots 5 62	Sample Tr 477		Page: Date: Time:	1 7/17/201 2:05:20]	
G		1		Av	T (D 44	Times		age Log	T	Net	Net	Т	otals	
S Spc T		Sample Trees	FF 16'	Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre	Net Cu.Ft.	Net Bd.Ft.	Tons/ Acre	Cu.Ft. Acre	Bd.Ft. Acre	Tons	Cunits	MBF
WH	1	72	10	5	116.035	.12	21610	cuirt.	Duilt	71010	21010	21010	TONS	cumits	mbi
WH	2	15		22	24.174	.53									
WH	3	18		24	29.009	1.42									
WH	4	11		43	17.728	1.55									
WH	5 6	5 10		48 55	8.058 16.116	1.10 3.16									
WH WH	7	9	86	58	21.726	5.81	31.38	4.2	18.5	2.72	133	579	162	79	
WH	8	11	86	69	20.331	7.10	27.72	7.1	28.0	4.02	196	776	239	117	
WН	9	8	88	68	11.683	5.16	14.60	9.3	31.0	2.78	136	453	166	81	
VН	10	15	87	69	17.743	9.68	24.84	11.2	36.2	5.72	279	899	341	166	
VH	11	21	87	81	20.529	13.55	39.10	11.5	40.0	9.22	450	1,564	549	268	
VH	12 13	20 24	88 88	84 89	16.429 16.798	12.90 15.48	29.57 33.60	15.0	51.7 59.6	9.09 11.88	444 580	1,528 2,002	541 707	264 345	1
VH VH	13	24	88	93	13.277	13.48	26.55	17.3 20.7	71.8	11.88	550	2,002 1,907	671	343	1
NН	15	22	88	94	11.566	14.19	22.08	24.5	86.7	11.17	542	1,914	664	323	1
VH	16	22	88	98	10.165	14.19	20.33	27.6	95.7	11.49	560	1,945	684	333	1
VH	17	20	88	98	8.186	12.90	15.96	32.7	110.5	10.71	522	1,764	637	311	1
VН	18	10	89	102	3.651	6.45	7.30	35.8	126.5	5.37	262	924	319	156	
WН	19	10	89	104	3.277	6.45	6.55	42.2	145.5	5.66	276	954	337	164	
WH WH	20 21	9 7	87 87	101 104	2.661 1.878	5.81 4.52	5.62 3.76	43.9 49.8	149.5 185.0	5.06 3.98	247 187	840 695	301 237	147 111	
WH	21	5	87	104	1.878	3.23	2.69	49.8	185.0	2.73	133	489	162	79	
WН	23	2	91	107	.447	1.29	.89	61.2	247.5	1.12	55	221	67	33	
WH	24	1	87	92	.205	.65	.41	57.0	200.0	.48	23	82	29	14	
WH	25	3	86	99	.568	1.94	1.32	53.6	194.3	1.45	71	257	87	42	
WH	28	1	87	99	.151	.65	.30	89.5	345.0	.55	27	104	33	16	
WH WH	29 32	1 1	88 83	115 112	.141 .116	.65 .65	.28 .23	75.0 117.5	300.0 435.0	.60	21 27	84 100	36 33	13 16	
WH	Totals	375	87	47	393.869	Store Vev	315.11	117.5	63.7	117.63	5,720	20,082	6,999	3,403	1,1
)F	2	1	U.	17	1.612	.04	515.11	10.5	00.7	117.00	5,720	20,002	0,777	5,105	.,.
) F	5	1		35	1.612	.22									
OF	9	3	84	60	4.381	1.94	5.84	7.5	27.5	.83	44	161	50	26	
DF	11	5	86 94	71	4.888	3.23	6.84	12.6	41.4	1.63	86 24	284	97 28	51	
)F)F	12 13	2 3	84 86	70 72	1.643 2.100	1.29 1.94	2.46 2.80	13.7 18.5	43.3 57.5	.64	34 52	107 161	38 59	20 31	
)F)F	13	6	86	82	3.621	3.87	2.80 6.04	20.6	57.5 66.0	2.36	124	398	141	74	
)F	15	3	86	87	1.577	1.94	3.15	21.0	70.0	1.26	66	221	75	39	
OF	16	8	86	90	3.697	5.16	7.39	24.1	81.3	3.39	178	601	202	106	
OF	17	5	86	91	2.047	3.23	3.68	27.9	94.4	2.15	103	348	128	61	
DF	18	1	88	111	.365	.65	.73	38.0	130.0	.53	28	95 202	31	17	
DF DF	19 20	3 1	87 85	88 101	.983 .296	1.94 .65	1.97 .59	33.7 42.5	103.3 145.0	1.26 .48	66 25	203 86	75 28	39 15	
DF	Totals	42	86	72	28.820	26.06	41.50	19.4	64.2	15.51	806	2,663	923	480	1
RA	3	42	00	24	3.223	.16		17.4	VT. 2	15.51	000	2,005	200	+00	9
RA	4	1		56	1.612	.14									
RA	5	2		55	3.223	.44									
RA	6	1		52	1.612	.32									
2.4	9	2	82	66	2.921	1.29	4.38	7.3	23.3	.74	32	102	44	19	
	141.0														
RA RA RA	10 11	2 3	87 85	88 69	2.366 2.933	1.29 1.94	4.73 4.89	8.0 11.4	27.5 24.0	.87 1.28	38 56	130 117	52 76	23 33	

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

Table 6. Stand Table – Type 1 (page 2 of 2)

TC TSTNDSUM

Stand Table Summary Page: 2 Туре Acres Plots Sample Trees Date: 7/17/2013 0001 59.50 62 477 Time: 2:05:20PM Av Average Log Net Net Totals Ht S Sample \mathbf{FF} Trees/ BA/ Logs Net Net Tons/ Cu.Ft. Bd.Ft. Т **DBH** Trees 16' Tot Acre Cu.Ft. Bd.Ft. Acre Acre Tons Cunits MBF Spc Acre Acre Acre 83 11.0 30.0 .40 15 42 9 2 RA 13 68 .65 1.40 24 1 .700 14 3 84 84 1.811 1.94 14.7 47.1 1.43 62 199 85 37 12 4.22 RA 1 82 21.5 23 31 13 5 RA 15 86 .526 .65 1.05 75.0 .52 79 RA 16 6 88 77 2.772 3.87 3.70 29.8 90.0 2.53 110333 150 65 20 RA 17 2 86 71 .819 1.29 1.23 28.3 90.0 .80 35 111 48 21 7 RA 18 2 86 68 .730 1.29 1.10 33.7 86.7 .85 37 95 50 22 6 19 1 87 101 .328 .65 33.5 115.0 .50 22 75 30 13 4 RA .66 Totals 33 85 18.47 33.10 15.2 44.2 11.63 503 1,464 692 300 87 65 28.860 RA 3 4.835 SS 1 3 .01 38 1.612 SS 4 1 .14 54 SS 5 1 1.612 .22 7 SS 9 1 65 36 1.460 .65 1.46 5.0 10.0 .12 7 15 4 1 12 2 86 77 1.643 1.29 16.0 43.3 .65 39 107 39 23 6 SS 2.46 SS 14 2 87 73 1.207 1.29 1.81 22.0 63.3 .66 40 115 39 24 7 SS 17 1 87 88 .409 .65 .82 30.5 100.0 .41 25 82 25 15 5 SS 20 1 84 85 .296 .65 .59 39.0 110.0 .38 23 65 23 14 4 SS 25 2 86 101 .379 1.29 .76 69.8 267.5 .87 53 203 52 31 12 SS 28 1 87 79 .151 .65 .30 72.5 240.0 .36 22 72 21 13 4 32 87 .116 .23 133.0 580.0 31 134 30 18 8 SS 1 113 .65 .51 42 86 102 .067 .65 .13 209.5 820.0 .46 28 110 28 17 7 SS 1 Totals 17 13.785 8.57 105.2 4.42 902 54 SS 81 41 8.11 31.3 268 263 160 3 4.835 .02 7 RC 1 18 1.612 2 1 .04 RC 22 RC 4 1 1.612 .14 RC 20 1 73 64 .296 .65 .30 59.0 90.0 .24 17 27 14 10 2 RC 28 1 78 90 .151 .65 .30 63.5 185.0 .26 19 56 15 11 3 Totals 138.0 82 5 7 75 15 8.505 1.48 .60 61.3 0.49 37 29 22 RC 2 26 3.223 CA 2 .07 4 30 1.612 .14 CA 1 Totals CA 3 27 4.835 .21 Totals 477 87 49 478.673 219.65 398.88 18.4 63.2 149.69 7334 25,193 8,906 4,364 1,499

Т	TSPCSTGR	L			Species	s, Sort (Frade - Boar	d Foo	ot Vol	lumes	s (Тур	e)]	Page Date Fime	7/	1 /17/20 :04:13	
0						Туре 0002	Acre 8.	s 60	Plots 12		Sample	e Trees 72	C 1	uFt	BdF W	't			
			%					Perc	cent No	et Boai	rd Foot	Volume			Av	erag	e Log		
Spp	s _{So} T rt	Gr ad	Net BdFt	Bd. I Def%	Ft. per Acre Gross	Net	Total Net MBF	L 3-7	.og Sc: 8-9	ale Dia 10-11		Log Leng 12-15 16-25		36-40	Ln I Ft I			CF/ Lf	Logs Per /Acre
RA	PU	UT	30		2,784	2,784	24	87		13		27	45	28	28	4	15	0.27	182.8
RA	HD	2S	3	6.7	317	296	3				100		100		30	12	140	1.30	2.1
RA	HD	3S	26	4.2	2,447	2,344	20			100		27	23	50	29	10	110	1.05	21.4
RA	HD	4 S	31	11.2	3,157	2,804	24		100			29	42	29	27	8	52	0.71	54.1
RA	H5	4 S	10		914	914	8	100				57	43		24	6	30	0.44	30.9
RA	Totals		91	5.0	9,619	9,141	79	37	31	30	3	30	40	30	28	5	31	0.43	291.4
WH	PU	UT	21		125	125	1	100					100		26	3	10	0.15	12.5
WН	CH	28	62	4.2	367	351	3				100			100	40		230	1.67	1.5
WH	DO	35	17		92	92	1	100					100		32	7	60	0.66	1.5
WH	Totals		6	2.6	583	568	5	38			62		38	62	28	4	37	0.42	15.5
DF	DO	4S	100	.0	226	226	2	100					100		30	5	30	0.30	7.5
DF	Totals		2	.0	226	226	2	100					100		30	5	30	0.30	7.5
RC	PU	UT	100		108	108	1	100						100	40	4	30	0.58	3.6
RC	Totals		1		108	108	1	100						100	40	4	30	0.58	3.6
Type T	otals			4.7	10,537	10,043	86	39	28	27	6	27	41	32	28	5	32	0.43	318.1

Table 7. Log Sort and Grade Distribution – Type 2

C TSTATS				SI	FATIST	ICS			PAGE DATE 7	1 /17/2013
				TYPE	ACI	RES	PLOTS	TREES	CuFt	BdFt
				0002		8.60	12	72	1	W
			5	TREES		ESTIMATED FOTAL		ERCENT AMPLE		
	PLOTS	TREES	12 13	PER PLOT		TREES	Т	REES		
TOTAL	12	72		6.0						
CRUISE	12	42		3.5		1,968		2.1		
OBH COUNT										
REFOREST	9	30		3.3		2,148		1.4		
COUNT BLANKS										
5LANKS 100 %										
100 /0			STAI	ND SUMM.	ARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
R ALDER	44	253.7	9.9	44	42.9	134.6	9,619	9,141	3,473	3,473
WHEMLOCK	13	105.6	4.8	25	6.0	13.1	583	568	184	184
WR CEDAR	3	20.3	6.1	20	1.7	4.2	108	108	83	83
DOUG FIR	1	7.5	9.0	42	1.1	3.3	226	226	68	68
S SPRUCE	5	41.6	3.0	14	1.2	2.0				
CASCARA	6	50.0	1.4	15	0.5	.5				
TOTAL	72	478.7	7.8	33	56.6	157.7	10,537	10,043	3,809	3,809
CL: 68.1 %	COEFF									
SD: 1.0	VAR.%	S.E.%	L	SAMPLE OW	E TREES - AVG	BF HIGH	#	OF TREES I 5	REQ. 10	INF. POP. 1
R ALDER	82.9	13.4	L		AVG 69	HIGH 79	#			
R ALDER WHEMLOCK	82.9 132.0	13.4 123.7	L	ow	AVG 69 150	HIGH 79 336	#			
R ALDER WHEMLOCK WR CEDAR	82.9	13.4	L	ow	AVG 69	HIGH 79	#			
R ALDER WHEMLOCK WR CEDAR DOUG FIR	82.9 132.0	13.4 123.7	L	ow	AVG 69 150	HIGH 79 336	#			
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA	82.9 132.0 173.2	13.4 123.7 120.0	L	00 GO	AVG 69 150 10	HIGH 79 336 22	#	5	10	1
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA	82.9 132.0	13.4 123.7	L	ow	AVG 69 150	HIGH 79 336	#			1
ALDER WHEMLOCK WR CEDAR OOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 %	82.9 132.0 173.2 92.3 COEFF	13.4 123.7 120.0 <i>14.2</i>		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES -	<u>нідн</u> 79 336 22 81 СF		5 340 OF TREES I	10 85 REQ.	1 3 INF. POP.
ALDER WHEMLOCK WR CEDAR OOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0	82.9 132.0 173.2 92.3 COEFF VAR.%	13.4 123.7 120.0 <i>14.2</i> S.E.%		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES - AVG	нідн 79 336 22 81 СF нідн		5 340	10	1 3 INF. POP.
ALDER WHEMLOCK WR CEDAR OOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 ALDER	82.9 132.0 173.2 92.3 COEFF	13.4 123.7 120.0 <i>14.2</i>		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES -	<u>нідн</u> 79 336 22 81 СF		5 340 OF TREES I	10 85 REQ.	1 3. INF. POP.
ALDER WHEMLOCK WR CEDAR OOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8	13.4 123.7 120.0 <i>14.2</i> S.E.% 10.7		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES - AVG 25	<u>НІGH</u> 79 336 22 81 СF <u>НІGH</u> 27		5 340 OF TREES I	10 85 REQ.	1 3. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES - AVG 25 46	<u>НІGH</u> 79 336 22 <i>81</i> СF <u>НІGH</u> 27 102		5 340 OF TREES I	10 85 REQ.	1 3 INF. POP.
ALDER WHEMLOCK WR CEDAR OOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0		00 60 61 SAMPLE	AVG 69 150 10 71 2 TREES - AVG 25 46	<u>НІGH</u> 79 336 22 <i>81</i> СF <u>НІGH</u> 27 102		5 340 OF TREES I	10 85 REQ.	1 3. INF. POP.
ALDER WHEMLOCK WR CEDAR SOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0		60 60 SAMPLE DW 22	AVG 69 150 10 71 2 TREES - AVG 25 46 8	HIGH 79 336 22 81 CF HIGH 27 102 17		5 340 OF TREES F 5	10 85 REQ. 10	1 3. INF. POP. 1
ALDER WHEMLOCK WR CEDAR OUUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK WR CEDAR OUUG FIR S SPRUCE CASCARA FOTAL	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0		00 60 61 SAMPLE 00 22 22	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 25	<u>НІGH</u> 79 336 22 <i>81</i> СF <u>НІGH</u> 27 102	#	5 340 OF TREES F 5 221	10 85 REQ. 10 55	1 3. INF. POP. 1 2.
ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 %	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF	13.4 123.7 120.0 <i>14.2</i> S.E.% 10.7 121.0 120.0 <i>11.5</i>	L	0W 60 61 SAMPLH 0W 22 22 22 TREES/4	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 46 8 25 46 8	<u>нідн</u> 79 336 22 8 <i>1</i> СF <u>нідн</u> 27 102 17 28	#	5 340 OF TREES F 5 221 OF PLOTS F	10 85 REQ. 10 55 REQ.	1 3. INF. POP. 1 2. INF. POP.
ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.%	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> S.E.%	L	0W 60 61 SAMPLH 0W 22 22 22 TREES/2 0W	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 46 8 25 46 8	нідн 79 336 22 81 СF нідн 27 102 17 28 Нідн	#	5 340 OF TREES F 5 221	10 85 REQ. 10 55	1 3 INF. POP. 1 INF. POP.
ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 ALDER	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i>	L	0W 60 61 SAMPLH 0W 22 22 22 TREES/4	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 46 8 25 46 8	<u>нідн</u> 79 336 22 8 <i>1</i> СF <u>нідн</u> 27 102 17 28	#	5 340 OF TREES F 5 221 OF PLOTS F	10 85 REQ. 10 55 REQ.	1 3. INF. POP. 1 2. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0	13.4 123.7 120.0 <i>14.2</i> S.E.% 10.7 121.0 120.0 <i>11.5</i> S.E.% 20.2	L	0W 60 61 SAMPLE 0W 22 22 22 TREES/2 0W 202	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 46 8 25 46 8 25 46 8	<u>нідн</u> 79 336 22 81 СF <u>нідн</u> 27 102 17 28 <u>нідн</u> 305	#	5 340 OF TREES F 5 221 OF PLOTS F	10 85 REQ. 10 55 REQ.	1 3. INF. POP. 1 2. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR COUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4	L	0W 60 61 SAMPLE 0W 22 22 TREES/A 0W 202 49 3	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 40 8 25 8 20 8 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 8 20 8 8 8 20 8 20 8 8 8 8 8 8 8 8 8 8 8 8 8	HIGH 79 336 22 81 CF HIGH 27 102 17 28 HIGH 305 162 38 15	#	5 340 OF TREES F 5 221 OF PLOTS F	10 85 REQ. 10 55 REQ.	1 3. INF. POP. 1 2. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2	L	0W 60 61 SAMPLE 0W 22 22 TREES/4 0W 202 49 3 26	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 40 8 20 8 20 20 8 20 20 8 20 20 8 20 20 20 20 20 20 20 20 20 20	HIGH 79 336 22 <i>81</i> CF HIGH 27 102 17 28 HIGH 305 162 38 15 57	#	5 340 OF TREES F 5 221 OF PLOTS F	10 85 REQ. 10 55 REQ.	1 3. INF. POP. 1 2. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68,1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR FOTAL CL: 68,1 % SPRUCE CASCARA FOTAL CL: 68,1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2	L	60 60 61 SAMPLE 22 22 22 TREES/2 202 49 3 202 49 3 26 6	AVG 69 150 10 71 2 TREES - AVG 25 46 8 25 40 8 25 25 40 8 25 25 25 25 25 25 25 25 25 25	HIGH 79 336 22 81 CF HIGH 27 102 17 28 HIGH 305 162 38 15 57 94	#	5 340 OF TREES H 5 221 OF PLOTS H 5	10 85 REQ. 10 55 REQ. 10	1 3. INF. POP. 1 INF. POP. 1
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA DOUG FIR S SPRUCE CASCARA TOTAL	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2	L	0W 60 61 SAMPLE 0W 22 22 TREES/4 0W 202 49 3 26 6 383	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 8 25 46 25 46 25 46 8 25 46 25 46 25 46 8 25 46 25 40 20 25 46 25 40 25 40 20 25 40 20 20 20 20 20 20 20 20 20 2	HIGH 79 336 22 81 CF HIGH 27 102 17 28 HIGH 305 162 38 15 57 94 574	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190	10 85 REQ. 10 55 REQ. 10 48	1 3 INF. POP. 1 INF. POP. 1 2 2
R ALDER WHEMLOCK WR CEDAR OUUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR COUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SPRUCE CASCARA FOTAL CL: 68.1 %	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1 COEFF	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2 <i>19.9</i>		0W 60 61 SAMPLE 0W 22 22 TREES/4 0W 202 49 3 26 6 383 BASAL 4	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 8 25 46 8 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 46 25 40 25 40 25 40 20 8 42 50 42 50 42 50 42 50 42 50 42 50 8 42 50 47 8 42 50 47 8 42 50 47 8 42 50 47 8 42 50 47 8 42 50 47 8 47 8 47 8 47 8 47 47 8 47 47 47 47 47 47 47 47 47 47	HIGH 79 336 22 81 CF HIGH 27 102 17 28 HIGH 305 162 38 15 57 94 574 RE	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190 OF PLOTS I	10 85 REQ. 10 55 REQ. 10 48 REQ.	1 3 INF. POP. 1 INF. POP. 2 INF. POP.
R ALDER WHEMLOCK WR CEDAR OUUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR COUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA FOTAL CL: 68.1 % SD: 1.0	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2		0W 60 61 SAMPLE 0W 22 22 TREES/4 0W 202 49 3 26 6 383	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 8 25 46 25 46 25 46 8 25 46 25 46 25 46 8 25 46 25 40 20 25 46 25 40 25 40 20 25 40 20 20 20 20 20 20 20 20 20 2	HIGH 79 336 22 81 CF HIGH 27 102 17 28 HIGH 305 162 38 15 57 94 574	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190	10 85 REQ. 10 55 REQ. 10 48	1 3 INF. POP. 1 INF. POP. 2 INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1 COEFF VAR.%	13.4 123.7 120.0 14.2 <u>S.E.%</u> 10.7 121.0 120.0 11.5 <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2 19.9 S.E.%		0W 60 61 SAMPLE 0W 22 22 TREES/2 0W 202 49 3 26 6 383 BASAL 2 0W	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 8 25 46 20 20 8 42 20 8 42 20 8 42 20 8 42 20 8 42 20 8 42 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 20 8 42 50 47 47 20 8 42 50 47 47 47 47 47 47 47 47 47 47	нідн 79 336 22 81 СF нідн 27 102 17 28 <u>нідн</u> 305 162 38 15 57 94 577 8 Е нідн	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190 OF PLOTS I	10 85 REQ. 10 55 REQ. 10 48 REQ.	1 3 INF. POP. 1 INF. POP. 2 INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 %	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1 COEFF VAR.% 52.6 164.0 280.3	13.4 123.7 120.0 <i>14.2</i> <u>S.E.%</u> 10.7 121.0 120.0 <i>11.5</i> <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2 <i>19.9</i> <u>S.E.%</u> 15.9 49.4 84.5		60 60 61 SAMPLE 22 22 TREES /2 202 49 3 202 49 3 26 6 383 BASAL 2 20W 113	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 25 46 8 25 46 25 46 8 25 46 25 46 25 46 8 25 46 25 46 25 46 25 46 25 46 25 47 25 46 25 47 25 25 25 25 25 25 25 25 25 25	нідн 79 336 22 81 СF нідн 27 102 17 102 17 28 <u>нідн</u> 305 162 38 15 57 94 577 94 577 8 Е нідн	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190 OF PLOTS I	10 85 REQ. 10 55 REQ. 10 48 REQ.	1 3. INF. POP. 1 INF. POP. 2. INF. POP.
R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL CL: 68.1 % SD: 1.0 R ALDER WHEMLOCK WR CEDAR DOUG FIR S SPRUCE CASCARA TOTAL	82.9 132.0 173.2 92.3 COEFF VAR.% 65.8 129.1 173.2 74.3 COEFF VAR.% 67.0 177.2 285.7 346.4 123.6 289.2 66.1 COEFF VAR.% 52.6 164.0	13.4 123.7 120.0 14.2 <u>S.E.%</u> 10.7 121.0 120.0 11.5 <u>S.E.%</u> 20.2 53.4 86.1 104.4 37.2 87.2 19.9 <u>S.E.%</u> 15.9 49.4		60 60 61 SAMPLE 22 22 TREES /2 202 49 3 202 49 3 26 6 383 BASAL 2 20W 113 7	AVG 69 150 10 71 C TREES - AVG 25 46 8 25 46 25 46 25 46 8 25 46 25 46 8 25 46 25 46 8 25 46 25 46 8 42 50 47 9 8 42 50 479 8 42 50 479 8 479 8 479 135 13 13 13	нідн 79 336 22 81 СF нідн 27 102 17 102 17 28 <u>нідн</u> 305 162 38 15 57 94 577 94 577 8 Е нідн	#	5 340 OF TREES I 5 221 OF PLOTS I 5 190 OF PLOTS I	10 85 REQ. 10 55 REQ. 10 48 REQ.	1 3. INF. POP. 1 INF. POP. 1 2. 2.

Table 8. Statistical Summary – Type 2

NORTHWEST FORESTRY SERVICES **RESOURCE INVENTORY – SHADY LANE PROPERTY**

TC TSTATS			•	STATIS	ГICS			PAGE DATE	2 7/17/2013
			TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
	455.7 do 1.10 d	1941 a 11 11. m. 9. M.C. Ma	0002		8.60	12	72	1	W
CL: 68.1%	COEFF		BASAI	AREA/AG	CRE		# OF PLC	TS REQ.	INF. POF
SD: 1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
TOTAL	50.9	15.3	134	158	182		113	28	13
CL: 68.1 %	COEFF		NET B	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
R ALDER	80.7	24.3	6,918	9,141	11,364				
WHEMLOCK	274.1	82.6	99	568	1,037				
WR CEDAR	346.4	104.4		108	222				
DOUG FIR	346.4	104.4		226	463				
S SPRUCE									
CASCARA									
TOTAL	78.2	23.6	7,675	10,043	12,411		267	67	30
CL: 68.1 %	COEFF		NET C	UFT FT/A	CRE		# OF PLOTS	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
R ALDER	66.6	20.1	2,776	3,473	4,170				
WHEMLOCK	261.4	78.8	39	184	330				
WR CEDAR	346.4	104.4		83	170				
DOUG FIR	346.4	104.4		68	139				
S SPRUCE									
CASCARA									
TOTAL	66.8	20.1	3,042	3,809	4,575		194	49	22

Table 8. Statistical Summary – Type 2 (page 2 of 2)

TC TSI	NDSUM						Stand	Table Sı	ımmary	!					
×1.012×05742742	LANDAL INC.	Laffronting T			e Surte-Salad A. B. P		уре 002	A	cres 8.60	Plots 12	Sample Ti 72		Page: Date: Time:	1 7/17/2013 2:05:20]	
				Av				Avera	age Log		Net	Net	Т	otals	
S S		Sample	FF	Ht	Trees/	BA/	Logs	Net	Net	Tons/	Cu.Ft.	Bd.Ft.			MDE
Spc T		Trees	16'	Tot	Acre	Acre .73	Acre	Cu.Ft.	Ba.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
RA RA	4 5	1 2		40 44	8.327 16.653	.73 2.27									
RA	6	3		45	24.980	4.90									
RA	7	4	77	46	49.890	13.33	49.89	5.0	10.0	5.74	249	499	49	21	
RA	8	3	83	45	28.648	10.00	28.65	7.7	13.3	5.05		382	43	19	
RA	9	2	84	61	15.090	6.67	22.64	7.0	16.7	3.64	158	377	31	14	
RA	10	4	86	61	24.446	13.33	36.67	9.5	25.0	8.01	348	917	69	30	
RA	11	3	81	59	15.153	10.00	25.25	9.6	24.0	5.58	242	606	48	21	
RA	12	6	84	59	25.465	20.00	42.44	12.0	27.0	11.71	509	1,146	101	44	1
RA	13	3	85	70	10.849	10.00	21.70	13.3	30.0	6.65		651	57	25	
RA	14	4	86	75	12.473	13.33	24.95	16.6	50.0	9.54	415	1,247	82	36	1
RA	15	4	86	93	10.865	13.33	21.73	22.8	71.3	11.37		1,548	98	43	1
RA	16	1	87	108	2.387	3.33	4.77	30.0	100.0	3.29		477	28	12	
RA	17	4	86	75	8.459	13.33	12.69	31.8	101.7	9.29	404	1,290	80	35	
RA	Totals	44	83	56	253.684	134.57	291.37	11.9	31.4	79.88	3,473	9,141	687	299	7
WH	1	3		4	24.980	.14									
WH	2	2		29	16.653	.36									
WH	3	2		23	16.653	.82									
WH	4	1		32	8.327	.73									
WH	5	1		45	8.327	1.14									
WH	6	2		34	16.653	3.27		- 17 P		-27.000000			atten.		
WH	7	1	84	35	12.473	3.33	12.47	4.0	10.0	1.02		125	9	4	
WH	20	1	86	94	1.528	3.33	3.06	44.0	145.0	2.76	134	443	24	12	8
WH	Totals	13	84	26	105.593	13.12	15.53	11.9	36.6	3.78	184	568	32	16	
DF	9	1	87	58	7.545	3.33	7.55	9.0	30.0	1.29	68	226	11	6	
DF	Totals	1	87	58	7.545	3.33	7.55	9.0	30.0	1.29	68	226	11	6	
RC	3	2		16	16.653	.82									
RC	13	1	70	58	3.616	3.33	3.62	23.0	30.0	1.12	83	108	10	7	
RC	Totals	3	70	23	20.269	4.15	3.62	23.0	30.0	1.12	83	108	10	7	
CA	1	4		12	33.306	.18									
CA	2	2		21	16.653	.36									
CA	Totals	6		15	49.959	.54									
SS	1	3		7	24.980	.14									
SS	4	1		25	8.327	.73									
SS	5	1		24	8.327	1.14									
SS	Totals	5		14	41.633	2.00									
A. 1996	and a star first	3. 													

Table 9. Stand Table – Type 2

Note BdF Pre Act Note BdF Pre Act Note Total T	Species, Sort Grade - Board Foot Volumes (Type)									
Not Bd. F. pr. Are Total Total		es CuFt 1	BdFt W							
Spp T ad BdFt Def% Gross Net Net MBF 3.7 8.9 WH CU CU U 9 4.6 1.618 1.544 ABB 14 4 WH CU 2S 20 1.618 1.543 3.478 4.41 15 WH DO 4.8 12 9.9 2.408 2.11 1.11 97 3 3.473 3.43 2.12 1.14 15 WH DO 3.8 4.14 508 5.68 1.153 1.153 3.1533 1.53 <th>et Board Foot Volun</th> <th>me</th> <th>Average Lo</th> <th>g Logs</th>	et Board Foot Volun	me	Average Lo	g Logs						
Sp I ad BdF Def% Gross Net Met 3-7 8-9 WH CU CU U Gu A.6 1,618 1,544 A.8 A.8 WH CU 25 20 A.7 3,515 3,351 1.07 WH CH 25 20 A.7 3,515 3,515 1.074 B.8 WH CH 35 20 3.1 1,478 1,433 77 83 WH CD0 25 6 14.6 1,259 1,074 57 83 WH DO 25 6 14.6 1,259 1,074 167 41 15 WH DO 35 18 3.6 2,069 2,861 131 153 WH DO 38 4 508 5,08 314 14 15 WH DO 38 16 15,03 16,08	ale Dia. Lo	og Length	Ln Dia Bd	CF/ Pe						
WH PU UT 9 4.6 1.618 1.544 8 14 48 WH CJ 2S 20 3,478 3,478 3,478 143 17 1 WH CH 2S 20 4.7 3,515 3,351 1,77 83 WH CH 3S 9 3.1 1,478 1,433 7 83 WH CH 3S 6 14.6 1,259 1,074 15 41 15 WH DO 3S 18 3.6 2,969 2,861 15 41 15 WH DO 3S 12 9.9 2,408 2,171 11 97 3 WH DO 3S 4 508 538 20 2 14 14 RA PU UT 33 1,533 1,533 1,533 1,53 8 7 1 RA HD 3S 8 10 13.2 556 443 21 100		5 16-25 26-35 36-40	Ft In Ft	Lf /Acr						
WH PU UT 9 4.6 1.618 1.544 8 14 48 WH CJ 2S 20 3.478 3.478 3.478 188 17 WH CH 2S 20 4.7 3.515 3.351 1.77 83 WH CH 3S 9 3.1 1.478 1.433 7 83 WH DO 2S 6 14.6 1.259 1.074 54 15 41 15 WH DO 3S 18 3.6 2.969 2.861 15 41 15 WH DO 3S 12 9.9 2.408 2.171 11 97 3 WH DO 3R 2 34.4 508 508 340 2 14 14 RA PU UT 33 1.533 1.533 1.53 8 7 1 16 RA HD 2S 43 5.3 2.091 1.990 100 10			5 21	0.00						
WH CJ 2S 20 $3,478$ 431 15 411 15 83 WH DO 38 12 $9,9$ $2,408$ $2,171$ 111 97 3 WH DO 38 12 $9,92$ $4,607$ 385 21 141 $16,798$ 160 $12,798$ $15,833$ $15,33$ 168 74 100 RA HD 45 45	38 18	8 36 46	21070 S	63 0.74 24						
WH CH 2S 20 4.7 3,515 3,351 17 WH CH 3S 9 3.1 1,478 1,433 7 83 WH CO 2S 6 14.6 1,259 1,074 5 41 15 WH DO 3S 18 3.6 2,969 2,861 15 41 15 WH DO 3S 12 9.9 2,408 2,171 11 97 3 WH DO 3R 2 34.4 508 3334 2 14 WH Totals T 58 5.6 17,741 16,754 85 21 14 RA HD 2S 4.3 5.3 2,091 1,980 100 10 11 10 14 RA HD 2S 6.6 13.2 256 483 22 100 10 SS CH 2S 42 4.2 1,980 1,898 10 10 63 33	100	100		84 2.29						
WH DO 2S 6 14.6 1,259 1,074 55 41 15 WH DO 4S 12 9.9 2,408 2,171 111 97 3 WH DO 3R 2 34.4 508 334 2 41 15 WH DO 3R 2 34.4 508 508 33 2 14 RM Totals 58 5.6 17,741 16,754 85 21 14 RA PU UT 33 1,533 1,533 1,533 8 74 16 RA HD 2S 43 5.3 2,091 1,960 100 10 10	100	100	39 17 4	43 2.75						
WH DO 3S 18 3.6 2,969 2,861 15 41 15 WH DO 3R 12 9.9 2,408 2,171 11 97 3 WH DO 3R 2 34.4 508 334 2 4 3 1 97 3 WH CO 3S 4 508 508 508 334 2 14 15 WH Co 3S 4 508 508 508 334 2 14 15 WH Totals 58 5.6 17,741 16,754 85 21 14 RA HD 2S 43 5.3 2,091 1,980 100 16 13.2 2,091 1,980 100	17	17 83	37 8	91 0.95 1:						
WH DO 4S 12 9.9 2,408 2,171 11 97 3 WH DO 3R 2 34.4 508 334 2 3 WH KO 3S 4 508 508 334 2 3 WH Totals 58 5.6 17,741 16,754 85 21 14 RA PU UT 33 1,533 1,533 1,533 8 74 RA HD 2S 43 5.3 2,091 1,980 10 10 10 10.2 100 10	100	24 76	27 14 1	92 2.04						
WH DO 3R 2 34.4 508 334 2 WH KO 3S 4 508 508 334 2 WH Totals 58 5.6 17,741 16,754 85 21 14 RA PU UT 33 1,533 1,533 1,533 8 74 16 RA HD 2S 43 5.3 2,091 1,980 100 10 100	44	6 94	37 8	89 0.77 33						
WH KO 3S 4 508 508 508 3 WH Totals 58 5.6 17,741 16,754 855 21 14 RA PU UT 33 1,533 1,533 1,533 1,533 18 74 RA HD 2S 43 5.3 2,091 1,980 100 74 RA HD 3S 8 10 13.2 556 483 22 100 RA HD 4S 10 13.2 556 483 22 100 RA H5 4S 6 244 244 11 100 100 RA Totals 16 3.8 4,791 4,607 233 30 10 SS CH 2S 42 4.2 1,980 1,898 100 35 63 35 SS DO 2S 6 12.5 337 295 22 35 SS Totals 15 12.3 5,0		32 27 41	29 5	28 0.41 7						
WH Totals 58 5.6 17,741 16,754 85 21 14 RA PU UT 33 1,533 1,533 1,533 8 74 RA HD 2S 43 5.3 2,091 1,980 10 10 10 RA HD 3S 8 367 367 2 100 100 RA HD 4S 10 13.2 556 483 2 100 100 RA HD 4S 6 244 244 1 100 100 RA Totals 16 3.8 4,791 4,607 23 30 10 SS CH 2S 6 2.8 238 231 1 63 63 SS DO 2S 6 12.5 337 295 2 63 3 6 SS Do 2S 15 12.3 5,033 4,415 23 3 3 RC Do 3S <td>100</td> <td>100</td> <td>40 14 1</td> <td>90 1.88</td>	100	100	40 14 1	90 1.88						
RA PU UT 33 1,533 1,533 1,533 8 74 RA HD 2S 43 5.3 2,091 1,980 10 10 10 10 10 10 10 10 10 10 10 100	100	100	40 11 1	80 1.22						
RA HD 2S 43 5.3 2,091 1,980 10 RA HD 3S 8 367 367 2 100 RA HD 4S 10 13.2 556 483 2 100 RA HD 4S 6 244 244 1 100 100 RA H5 4S 6 244 244 244 1 100 RA H5 4S 6 244 244 1 100 100 RA Totals 16 3.8 4,791 4,607 23 30 10 SS CH 2S 42 4.2 1,980 1,898 10 53 SS DO 2S 6 12.5 337 295 2 53 SS DO 3R 46 19.6 2,478 1,992 10 53 SS Totals 15 12.3 5,033 4,415 23 3 3 PF </td <td>12 53 2</td> <td>2 9 6 83</td> <td>31 8 9</td> <td>3 0.90 17</td>	12 53 2	2 9 6 83	31 8 9	3 0.90 17						
RA HD 2S 43 5.3 2,091 1,980 10 RA HD 3S 8 367 367 2 100 RA HD 4S 10 13.2 556 483 2 100 RA HD 4S 6 244 244 1 100 100 RA H5 4S 6 244 244 244 1 100 RA H5 4S 6 244 244 244 1 100 RA Totals 16 3.8 4,791 4,607 23 30 10 SS CH 2S 42 4.2 1980 1,898 10 35 6 2.8 238 231 1 63 SS DO 2S 6 12.5 337 295 2 35 35 36 2.3 3 SS Totals 15 12.3 5,033 4,415 23 3 3 PF	26	15 68 17	28 4	28 0.34 5:						
RA HD 4S 10 13.2 556 483 2 100 RA H5 4S 6 244 244 1 100 RA Totals 16 3.8 4,791 4,607 23 30 10 SS CH 2S 42 1,980 1,898 10 63	100	63 37	33 12 1	67 1.50 1						
RA H5 4S 6 244 244 11 100 RA Totals 16 3.8 $4,791$ $4,607$ 23 30 10 SS CH 2S 42 4.2 $1,980$ $1,898$ 100 533 533 231 11 633 SS CH 3S 6 2.8 238 231 11 633 SS DO 2S 6 12.5 337 295 2 2 SS DO $3R$ 46 19.6 $2,478$ $1,992$ 100 3 3 RC DO $3S$ 100 1.7 $2,306$ $2,266$ 122 3 3 RC Totals 8 1.7 $2,306$ $2,266$ 122 5 DF CH $2S$ 55 489 489 2 1 1 1 1 1 DF CH $2S$ 31 25.0	100	100	30 11 1	30 1.23						
RA Totals 16 3.8 $4,791$ $4,607$ 23 30 10 SS CH 2S 42 4.2 1,980 1,898 10 63 SS CH 3S 6 2.8 238 231 1 63 SS CH 3S 6 2.8 238 231 1 63 SS DO 2S 6 12.5 337 295 2 2 SS DO 3R 46 19.6 2,478 1,992 10 0 SS Totals 15 12.3 5,033 4,415 23 3 RC DO 3S 100 1.7 2,306 2,266 12 - DF CH 2S 55 489 489 2 - - DF CH 3S 14 127 127 1 - - DF DO 2S 31 25.0 362 272 1 -		100	28 8	48 0.71 10						
SS CH 2S 42 4.2 1,980 1,898 10 SS CH 3S 6 2.8 238 231 1 63 SS DO 2S 6 12.5 337 295 2 SS DO 3R 46 19.6 2,478 1,992 10 SS Totals 15 12.3 5,033 4,415 23 3 RC DO 3S 100 1.7 2,306 2,266 12 DF CH 2S 55 489 489 2 2 DF CH 3S 14 127 127 1 1 DF DO 2S 31 25.0 362 272 1 1		100	28 6	30 0.39						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 52	5 73 22	29 6 5	2 0.59 8						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	4 96	37 21 8	45 4.72						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	37 63	18 Martin 19 Martin 20	24 1.34						
SS DO 3R 46 19.6 2,478 1,992 10 SS Totals 15 12.3 5,033 4,415 23 3 RC DO 3S 100 1.7 2,306 2,266 12 RC Totals 8 1.7 2,306 2,266 12 DF CH 2S 55 489 489 2 DF CH 3S 14 127 127 1 DF DO 2S 31 25.0 362 272 1	100	100	NIMP DURI DE	00 9.75						
RC DO 3S 100 1.7 2,306 2,266 12 RC Totals 8 1.7 2,306 2,266 12 DF CH 2S 55 489 489 2 DF CH 3S 14 127 127 1 DF DO 2S 31 25.0 362 272 1	100	4 9 87	35 29 11	86 8.21						
RC DO 3S 100 1.7 2,306 2,266 12 RC Totals 8 1.7 2,306 2,266 12 DF CH 2S 55 489 489 2 DF CH 3S 14 127 127 1 DF DO 2S 31 25.0 362 272 1	2 95	8 8 84	35 21 71	0 4.73						
RC Totals 8 1.7 2,306 2,266 12 DF CH 2S 55 489 489 2 DF CH 3S 14 127 127 DF DO 2S 31 25.0 362 272 1	6 94	9 7 85		11 3.57						
DF CH 2S 55 489 489 2 DF CH 3S 14 127 127 1 DF DO 2S 31 25.0 362 272 1	6 94	9 7 85	31 16 41							
DF CH 3S 14 127 127 1 DF DO 2S 31 25.0 362 272 1	100	SUSCERM		40 2.78						
DF DO 28 31 25.0 362 272 1	100	100 100	Salet of the second	40 2.78						
DF Tatala 3 0.2 978 887 5	100	100	22.594 G2.694 B3	40 1.33 00 4.19						
	14 86	31 69	29 18 32	7 2.44						
		2175 2112	5, 10 32							

Table 10. Log Sort and Grade Distribution – Type 3

C TSTATS				SI	FATIST	ICS			PAGE DATE 7.	1 /17/2013
				TYPE	ACI	RES	PLOTS	TREES	CuFt	BdFt
	want on th			0003		5.10	9	75	1	W
					8	ESTIMATED	PI	ERCENT		
				TREES		FOTAL		AMPLE		
	PLOTS	TREES	Î	PER PLOT		TREES	TI	REES		
TOTAL	9	75		8.3						
CRUISE	9	55		6.1		941		5.8		
DBH COUNT REFOREST	6	20		3.3		1,132		1.8		
COUNT	×			A70.00		-,				
BLANKS										
100 %										
			STA	ND SUMM.	ARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
WHEMLOCK	48	278.1	10.5	39	51.4	166.1	17,741	16,754	5,033	5,014
R ALDER	12 6	66.5	11.9	51	14.8	51.1	4,791	4,607	1,507	1,507
S SPRUCE WR CEDAR	6 8	13.8 47.2	17.2 9.0	20 18	5.4 7.0	22.3 21.0	5,033 2,306	4,415 2,266	1,029 611	1,029 611
DOUG FIR	1	.9	30.0	92	0.8	4.4	2,500 978	887	195	195
TOTAL	- 75	406.5	10.9	38	80.1	264.9	30,849	28,930	8,376	8,357
CONFIDENCE	LIMITS OF THE	E SAMPLE								
	TIMES OUT OF		LUME WII	L BE WIT	HIN THE S	AMPLE ERR	OR			
CL: 68.1 %	COEFF			SAMPLE	TREES -	BE	#	OF TREES R	FO	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH	11	5	10 III	1
WHEMLOCK	97.1	16.7		235	282	329				
R ALDER	62.5	19.8		112	139	167				
S SPRUCE WR CEDAR	87.8 265.1	43.7 50.1		1,671 60	2,968 120	4,265 180				
DOUG FIR	205.1	50.1		00	120	100				
TOTAL	197.1	26.6		406	553	700		1,554	388	17
CL: 68.1 %	COEFF			SAMPLI	E TREES -	CF	#	OF TREES R	EQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH		5	10	1
WHEMLOCK	87.0 58.4	14.9 18.5		67 36	79 45	91 53				
R ALDER S SPRUCE	58.4 79.4	39.5		392	4J 648	904				
WR CEDAR	260.7	49.3		16	32	48				
DOUG FIR				107	200				450	
TOTAL	165.2	22.3		107	138	168	1.17	1,091	273	12
CL: 68.1 %	COEFF	6 T. 6/		TREES/#			#	OF PLOTS R		INF. POP.
SD: 1.0 WHEMLOCK	VAR.% 110.6	S.E.% 39.1	L	OW 169	AVG 278	HIGH 387		5	10	1
R ALDER	147.4	52.1		32	66	101				
S SPRUCE	236.6	83.6		2	14	25				
WR CEDAR	153.3	54.2		22	47	73				
DOUG FIR TOTAL	300.0 <i>84.9</i>	106.0 <i>30.0</i>		284	1 406	2 528		324	81	3
CL: 68.1 %	COEFF	50.0					16			
SD: 1.0	VAR.%	S.E.%	13	BASAL A	AREA/ACI AVG	RE HIGH	#	OF PLOTS R 5	EQ. 10	INF. POP. 1
WHEMLOCK	54.8	19.4	Ľ	134	166	198		2	10	1
R ALDER	134.2	47.4		27	51	75				
S SPRUCE	130.2	46.0		12	22	33				
WR CEDAR DOUG FIR	135.0 300.0	47.7 106.0		11	21 4	31 9				
TOTAL	300.0 34.3	106.0 12.1		233	4 265	9 297		53	13	
CL: 68.1 %	COEFF			NET BF/	177 - 278 F. B. C		#	OF PLOTS R	8/1	INF. POP.
SD: 1.0	VAR.%	S.E.%	L	OW	AVG	HIGH	п.	5	15	1017. POP.
1.0										_

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

IC TSTATS				STATIS		PAGE DATE	2 7/17/2013		
	11	100.04 A	TYPE	A	CRES	PLOTS	TREES	CuFt	BdFt
an a	sad in constitued	- Antone - 11 - 12 Martin Robert Au	0003		5.10	9	75	1	W
CL: 68.1%	COEFF		NET B	F/ACRE			# OF PLO'	TS REQ.	INF. POP
SD: 1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
R ALDER	129.8	45.9	2,495	4,607	6,720				
S SPRUCE	130.8	46.2	2,374	4,415	6,456				
WR CEDAR	173.7	61.4	876	2,266	3,657				
DOUG FIR	300.0	106.0		887	1,828				
TOTAL	41.1	14.5	24,730	28,930	33,130		76	19	٤
CL: 68.1 %	COEFF		NET C	UFT FT/A	CRE		# OF PLOTS I	REQ.	INF. POP.
SD: 1.0	VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
WHEMLOCK	60.3	21.3	3,946	5,014	6,082				
R ALDER	124.8	44.1	843	1,507	2,172				
S SPRUCE	126.2	44.6	570	1,029	1,488				
WR CEDAR	166.5	58.8	252	611	971				
DOUG FIR	300.0	106.0		195	401				
TOTAL	37.8	13.3	7,243	8,357	9,472		64	16	7

Table 11. Statistical Summary – Type 3 (page 2 of 2)

Table 12. Stand Table – Type 3

TC ISTNDSUM Stand Table Summary															
							уре 00 3	A	cres 5.10	Plots 9	Sample Ti 7:		Page: Date: Time:	1 7/17/201 2:05:201	
s		Sample	FF	Av Ht	Trees/	BA/	Logs	Aver: Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	То	otals	
Spc T			16'	Tot	Acre	Acre	Acre	Cu.Ft.		Acre	Acre	Acre	Tons	Cunits	MBF
WH	1	1		10	11.102	.06									
WH	2	4		16	44.408	.97									
WН	4	3		26	33.306	2.91									
VН	-5	3		33	33.306	4.54									
VH	6	3	07	47	33.306	6.54	10.72	5.0	20.0	1.21	(1	255	-	2	
VH VH	8 10	1 4	87 78	44 53	12.732 32.595	4.44 17.78	12.73 32.59	5.0 12.5	20.0 30.0	1.31 8.35		255 978	7 43	3 21	
VH	10	3	84	59	16.977	13.33	22.64	15.2	42.5	7.08		962	36	18	
VH	13	1	86	94	4.822	4.44	4.82	31.0	120.0	3.06		579	16	8	
VH	14	3	85	54	12.473	13.33	16.63	17.0	47.5	5.80		790	30	14	
VH	15	3	86	73	10.865	13.33	18.11	22.8	64.0	8.46	413	1,159	43	21	
VH	16	1	87	75	3.183	4.44	6.37	22.0	60.0	2.87		382	15	7	
VН	17	2	88	101	5.639	8.89	11.28	31.5	105.0	7.28		1,184	37	18	
VH	18	1	87	99	2.515	4.44	7.55	24.0	96.7	3.71		729	19	9	
VH	20	1	87	114	2.037	4.44	4.07	49.5	185.0	4.13		754	21	10	
VH VH	21 22	3 1	86 87	98 91	5.543 1.684	13.33 4.44	11.09 3.37	44.3 50.5	155.0 160.0	10.45 3.49		1,718 539	53 18	25 9	
VH	23	1	87	102	1.540	4.44	3.08	58.5	210.0	3.69		647	10	9	
ИН	24	1	87	102	1.415	4.44	2.83	58.5	205.0	3.39		580	17	8	
VH	25	2	87	104	2.608	8.89	5.22	70.5	257.5	7.54		1,343	38	19	
VH	26	2	85	90	2.411	8.89	4.82	62.8	202.5	6.20	303	976	32	15	
VН	29	1	84	98	.969	4.44	1.94	85.0	355.0	3.38	165	688	17	8	
WH	30	2	86	127	1.811	8.89	4.53	91.6	376.0	8.50		1,702	43	21	
WH	31	1	85	134	.848	4.44	2.54	85.7	310.0	4.47	218	789	23	11	
WН	Totals	48	84	46	278.095	166.13	176.20	28.5	95.1	103.17	5,014	16,754	526	256	
RA	6	1		49	11.102	2.18		111 100 100					100011		
RA	8	2	87	71	25.465	8.89	38.20	7.0	20.0	6.15		764	31	14	
RA	10	1	87	47	8.149	4.44	8.15	11.0	30.0	2.06		244	11	5	
RA RA	13 17	1 3	86 87	57 76	4.822 8.459	4.44 13.33	9.64 16.92	13.0 25.7	30.0 85.0	2.88 9.99		289 1,438	15 51	6 22	
RA	18	1	86	81	2.515	4.44	5.03	32.0	110.0	3.70		553	19	8	
RA	19	1	87	88	2.257	4.44	4.51	33.5	115.0	3.48		519	18	8	
RA	20	1	87	85	2.037	4.44	4.07	41.5	130.0	3.89		530	20	9	
RA	22	1	86	72	1.684	4.44	1.68	65.0	160.0	2.52	109	269	13	6	
RA	Totals	12	87	65	66.489	51.07	88.21	17.1	52.2	34.67	1,507	4,607	177	77	
s	1	1		4	11.102	.06									
s	26	1	88	110	1.205	4.44	2.41	81.5	325.0	3.24		784	17	10	
SS 19	35 44	1 1	81 81	93 114	.665 .421	4.44 4.44	1.33 1.26	131.5 135.7	380.0 626.7	2.89 2.83		506 791	15 14	9 9	
3S 3S	44 63	1	81 85	114 171	.421	4.44 4.44	.62	408.3	626.7 1930.0	4.15		791 1,189	14 21	9 13	
ss ss	64	1	87	129	.205	4.44 4.44	.60	408.3 394.0	1930.0	3.88		1,189	21	13 12	
s	Totals	6	85	25	13.798	22.28	6.22	165.6	710.2	16.99	1,029	4,415	87	52	
ĸĊ	2	2	2.532	12	22.204	.48	2473.2014		en forsterlief. E		0.00000104	1000000	20130	10.12	
lC	3	1		18	11.102	.54									
lC	6	1		18	11.102	2.18									
C	29	1	83	81	.969	4.44	1.94	78.0	285.0	2.04	151	552	10	8	
	36	1	74	79	.629	4.44	1.26	114.0	360.0	1.94	143	453	10	7	
кC															
IC IC	37 38	1 1	81 84	100 100	.595 .564	4.44 4.44	1.19	134.0	505.0 585.0	2.15 2.13		601	11 11	8 8	

NORTHWEST FORESTRY SERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

Table 12. Stand Table – Type 3 (page 2 of 2)

TC	TST	NDSUM						Stand	Table Si	ummary						
11064											2					
								уре 00 3	A	cres 5.10	Plots 9	Sample Tr 75		Page: Date: Time:	2 7/17/201 2:05:20]	
Spc	S T		Sample Trees	FF 16'	Av Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre	Avera Net Cu.Ft.	age Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	T o	o t a l s Cunits	MBF
RC		Totals	8	81	19	47.166	20.99	5.51	110.9	411.0	8.2	.5 611	2,266	42	31	12
DF		30	1	88	114	.905	4.44	2.72	71.7	326.7	3.7	70 195	887	19	10	:
DF		Totals	1	88	114	.905	4.44	2.72	71.7	326.7	3.7	70 195	887	19	10	
Totals			75	85	45	406.454	264.91	278.85	30.0	103.7	166.7	78 8357	28,930	851	426	148

Diameter Diversity Index and Stand Density Index

Diameter Diversity Index is relatively low in Types 1 and 2. These stands are young and contain few large trees. The Index is higher in Type 3 due to the presence of large residuals. Indexes follow. The maximum possible is 10.

Type 1	4.7
Type 2	3.3
Type 3	6.2

Stand densities generally are high, primarily due to the abundance of hemlock natural regeneration. Stand Density Indexes are as follows:

Type 1	393
Type 2	307
Type 3	464

<u>Multi-Layering</u>

Multi-layering is uncommon. In fact, none of the 83 sample plots in the cruise was considered to be multi-layered.

<u>Snags</u>

Tables 13 and 14 summarize the snag data. The property contains an average of about 20 snags per acre. Most are in Decay Classes 1 and 2, and most are western hemlock. No Class 5 snags were tallied.

Most of the snags are small, with an average diameter for the property of only 9.5 inches. Only one snag larger than 20 inches in diameter was recorded. It was a 58-inch redcedar in Type 2.

	 Decay Class 										
	1	2	3	4	5	All					
Type 1	8.1	9.1	4.4	1.0	0	22.6					
Type 2			2.4	0.2	0	2.6					
Type 3				13.2	0	13.2					
All	6.6	7.4	3.8	1.8	0	19.6					

Table 13. Number of Snags by Type and Decay Class

	Douglas-fir	Western Hemlock	Sitka Spruce	Western Redcedar	Red Alder	All
Type 1		10.4			•	<u> </u>
Number per Acre	4.6	13.6	2.4		2.0	22.6
Average DBH	8.6	9.7	7.0		10.6	9.3
Average Height	57.3	50.3	64.0		64.2	54.4
<u>Type 2</u> Number per Acre Average DBH Average Height				0.2 58.0 20.0	2.4 16.0 38.0	2.6 19.0 36.7
<u>Type 3</u> Number per Acre Average DBH Average Height		13.2 10.7 14.3				13.2 10.7 14.3
<u>All</u> Number per Acre Average DBH	3.7 8.6	12.0 9.8	2.0 7.0	<0.1 58.0	1.9 11.4	19.6 9.5
Average Height	57.3	47.5	64.0	20.0	60.3	52.2

Table 14. Number and Size of Snags by Type and Species

Down Wood

Table 15 summarizes results for the down woody material. Volume is relatively low. Most of the material is in Decay Classes 4 and 5.

Table 15. Down Wood							
	 ◄ Decay Class 						
	1	2	3	4	5	All	
Type 1							
Pieces per Acre	28	22	25	40	45	160	
Cubic Feet per Acre	288	209	119	560	520	1,697	
Tons per Acre	4	3	1	5	5	18	
<u>Type 2</u> Pieces per Acre Cubic Feet per Acre Tons per Acre	1 16 <1	11 22 <1	42 193 2	16 93 1	61 479 5	131 803 8	
<u>Type 3</u> Pieces per Acre		5	5	56	15	81	
Cubic Feet per Acre Tons per Acre		53 1	269 3	732 8	30 <1	1,083 12	
<u>All</u> Pieces per Acre Cubic Feet per Acre Tons per Acre	23 236 3	20 176 2	26 138 2	38 517 5	45 482 5	152 1,549 17	
Tons per Acie	J	2	2	5	J	1/	

NORTHWEST FORESTRYSERVICES RESOURCE INVENTORY – SHADY LANE PROPERTY

Understory Vegetation

Table 16 summarizes results for the understory vegetation. In the table, "Cover" refers to the percentage of the forest floor covered by the vegetation class. "Frequency" refers to the percentage of sample plots containing the vegetation class.

In all types, sword fern constituted the majority of the cover in the herb and fern category. Salmonberry constituted the majority of the cover in the shrub category in Types 1 and 2. It also was the major species in Type 3, but red huckleberry also was important in this type.

Table 16. Understory Vegetation	Table 16.	Understory	Vegetation
---------------------------------	-----------	------------	------------

		Shrubs		Herbs and Ferns		Grasses	
Туре	Cover	Frequency	Cover	Frequency	Cover	Frequency	
1	9	92	26	100	1	84	
2	18	100	55	100	3	100	
3	24	100	30	100	7	100	
All	11	94	30	100	2	88	